Artificial intelligence applications for accurate geothermal temperature prediction in the lower Friulian Plain (north-eastern Italy)

均方误差 地温梯度 平均绝对百分比误差 威尔科克森符号秩检验 统计 人工神经网络 地热能 极限学习机 数学 弹性网正则化 计算机科学 机器学习 人工智能 算法 数据挖掘 回归 地质学 地球物理学 曼惠特尼U检验
作者
Danial Sheini Dashtgoli,Michela Giustiniani,Martina Busetti,Claudia Cherubini
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:460: 142452-142452 被引量:9
标识
DOI:10.1016/j.jclepro.2024.142452
摘要

Geothermal energy as a sustainable and clean energy source depends on the accurate estimation of reservoir temperatures. Understanding aquifer temperatures is crucial for optimizing low-enthalpy geothermal system exploitation. Advances in predictive algorithms can improve geothermal efficiency, while conventional methods of indirect temperature measurement and assumptions in geochemical analysis lead to uncertainties. As a solution, this study presents a comprehensive evaluation of six machine learning algorithms including eXtreme gradient boosting (XGBoost), decision tree, generalized regression neural network, extreme randomized trees, radial basis function, and elastic net. We employed essential performance metrics including coefficient of determination (R2) score, root mean square error (RMSE), mean absolute error, mean absolute percentage error (MAPE), and variance accounted for (VAF) to elucidate their predictive accuracy and generalization potential in the lower Friulian Plain (north-eastern Italy) where a geothermal reservoir is present. Among the algorithms scrutinized, XGBoost emerges as a predictive exemplar, achieving a remarkable R2 score of 0.9930 on the test dataset, with consistently low RMSE of 0.788, MAE of 0.587, MAPE of 1.909, and high VAF of 99.30, reaffirming its exceptional precision and robustness. It is worth noting that the other four models show slightly weaker performance than XGBoost, while Elastic Net shows moderate predictive power, which illustrates the complexity of the database. The Wilcoxon signed-rank test confirmed the superior performance of XGBoost in estimating geothermal temperatures compared to other algorithms, with statistical evidence supporting its precision and reliability. A Monte Carlo simulation for uncertainty analysis underlined the importance of model selection, accuracy and uncertainty management in the planning of geothermal projects in the lower Friulian Plain. A sensitivity analysis was performed to identify the main factors influencing the temperature prediction. Among the parameters considered, hydrogen carbonate the highest significance at 0.51, which is essential for accurate temperature prediction because of its buffering capacity which directly influences water's thermal properties. Magnesium and electrical conductivity each contribute with 0.11, also play significant roles due to their impact on the water's heat retention and distribution capabilities. Water depth, with a value of 0.08, also has a significant influence on the temperature profiles in prediction models. In summary, the accurate prediction of XGBoost for the temperature of aquifer in carbonate reservoirs in the lower Friulian Plain, underline its value for optimizing geothermal resources and highlight most important influences on temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
米子哈完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
顾矜应助yuyu采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
jinan发布了新的文献求助10
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
JamesPei应助落英还采纳,获得10
3秒前
顾矜应助xiaofeidiao采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
AneyWinter66应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
卡皮巴拉应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
4秒前
AneyWinter66应助科研通管家采纳,获得10
4秒前
Mic应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
一人一般完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
空瓶氧气发布了新的文献求助10
5秒前
Ava应助t通采纳,获得10
5秒前
煦暖完成签到,获得积分10
5秒前
年轻迪奥完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601020
求助须知:如何正确求助?哪些是违规求助? 4686584
关于积分的说明 14845029
捐赠科研通 4679502
什么是DOI,文献DOI怎么找? 2539154
邀请新用户注册赠送积分活动 1506042
关于科研通互助平台的介绍 1471253