Artificial intelligence applications for accurate geothermal temperature prediction in the lower Friulian Plain (north-eastern Italy)

均方误差 地温梯度 平均绝对百分比误差 威尔科克森符号秩检验 统计 人工神经网络 地热能 极限学习机 数学 弹性网正则化 计算机科学 机器学习 人工智能 算法 数据挖掘 回归 地质学 地球物理学 曼惠特尼U检验
作者
Danial Sheini Dashtgoli,Michela Giustiniani,Martina Busetti,Claudia Cherubini
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:460: 142452-142452 被引量:9
标识
DOI:10.1016/j.jclepro.2024.142452
摘要

Geothermal energy as a sustainable and clean energy source depends on the accurate estimation of reservoir temperatures. Understanding aquifer temperatures is crucial for optimizing low-enthalpy geothermal system exploitation. Advances in predictive algorithms can improve geothermal efficiency, while conventional methods of indirect temperature measurement and assumptions in geochemical analysis lead to uncertainties. As a solution, this study presents a comprehensive evaluation of six machine learning algorithms including eXtreme gradient boosting (XGBoost), decision tree, generalized regression neural network, extreme randomized trees, radial basis function, and elastic net. We employed essential performance metrics including coefficient of determination (R2) score, root mean square error (RMSE), mean absolute error, mean absolute percentage error (MAPE), and variance accounted for (VAF) to elucidate their predictive accuracy and generalization potential in the lower Friulian Plain (north-eastern Italy) where a geothermal reservoir is present. Among the algorithms scrutinized, XGBoost emerges as a predictive exemplar, achieving a remarkable R2 score of 0.9930 on the test dataset, with consistently low RMSE of 0.788, MAE of 0.587, MAPE of 1.909, and high VAF of 99.30, reaffirming its exceptional precision and robustness. It is worth noting that the other four models show slightly weaker performance than XGBoost, while Elastic Net shows moderate predictive power, which illustrates the complexity of the database. The Wilcoxon signed-rank test confirmed the superior performance of XGBoost in estimating geothermal temperatures compared to other algorithms, with statistical evidence supporting its precision and reliability. A Monte Carlo simulation for uncertainty analysis underlined the importance of model selection, accuracy and uncertainty management in the planning of geothermal projects in the lower Friulian Plain. A sensitivity analysis was performed to identify the main factors influencing the temperature prediction. Among the parameters considered, hydrogen carbonate the highest significance at 0.51, which is essential for accurate temperature prediction because of its buffering capacity which directly influences water's thermal properties. Magnesium and electrical conductivity each contribute with 0.11, also play significant roles due to their impact on the water's heat retention and distribution capabilities. Water depth, with a value of 0.08, also has a significant influence on the temperature profiles in prediction models. In summary, the accurate prediction of XGBoost for the temperature of aquifer in carbonate reservoirs in the lower Friulian Plain, underline its value for optimizing geothermal resources and highlight most important influences on temperature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助科研小菜鸡采纳,获得10
刚刚
科研通AI5应助科研小菜鸡采纳,获得10
刚刚
科研通AI2S应助科研小菜鸡采纳,获得10
1秒前
隐形曼青应助科研小菜鸡采纳,获得10
1秒前
1秒前
李爱国应助科研小菜鸡采纳,获得10
1秒前
Ava应助科研小菜鸡采纳,获得10
1秒前
小马甲应助科研小菜鸡采纳,获得10
1秒前
领导范儿应助科研小菜鸡采纳,获得10
1秒前
只只完成签到,获得积分10
2秒前
vveiei发布了新的文献求助10
3秒前
香蕉觅云应助花花采纳,获得30
3秒前
3秒前
FashionBoy应助刘正宇采纳,获得10
4秒前
小蘑菇应助杨e采纳,获得10
4秒前
4秒前
huifang完成签到,获得积分10
5秒前
LeeWX完成签到,获得积分10
5秒前
5秒前
遍地捡糖不要钱完成签到,获得积分10
5秒前
无花果应助safsafdfasf采纳,获得10
5秒前
852应助温茶采纳,获得10
5秒前
sknlsnfemfldn发布了新的文献求助10
5秒前
领导范儿应助李佳慧采纳,获得10
6秒前
dmeng发布了新的文献求助10
6秒前
7秒前
所所应助wjh采纳,获得10
7秒前
夜聆雪完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
火火完成签到,获得积分10
8秒前
渔渔完成签到 ,获得积分10
9秒前
迷路的朋友完成签到,获得积分10
9秒前
朱金雨完成签到 ,获得积分10
9秒前
硅负极发布了新的文献求助10
9秒前
斑ban发布了新的文献求助10
10秒前
徐凤年发布了新的文献求助30
11秒前
健忘的灵槐完成签到,获得积分10
11秒前
朱大头完成签到,获得积分10
11秒前
可爱的函函应助wxz1998采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012668
求助须知:如何正确求助?哪些是违规求助? 4253901
关于积分的说明 13256323
捐赠科研通 4056774
什么是DOI,文献DOI怎么找? 2218955
邀请新用户注册赠送积分活动 1228505
关于科研通互助平台的介绍 1151073