Improved YOLOV5-Based UAV Pavement Crack Detection

像素 人工智能 棱锥(几何) 计算机科学 特征(语言学) 计算机视觉 特征提取 目标检测 航空影像 模式识别(心理学) 图像(数学) 数学 几何学 语言学 哲学
作者
Jian Xing,Ying Liu,Guang-Zhu Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (14): 15901-15909 被引量:24
标识
DOI:10.1109/jsen.2023.3281585
摘要

In terms of highway crack detection, the combination of unmanned aerial vehicles (UAVs) and deep learning networks has become a powerful detection means. However, in the actual detection, in order to take into account the detection efficiency, it is necessary to ensure that the detection area is large enough, which makes the crack occupy few pixels in the image, and the image background is complex. Therefore, in this article, DJI Mavic3 is used to establish the image data set of highway pavement cracks under complex background. And, the YOLOV5 deep learning model is improved by adding a swin transformer structure and bidirectional feature pyramid network (BIFPN) feature pyramid. The improved YOLOV5 model achieved real-time pixel-level detection with a detection accuracy of 90% and a detection speed of 43.5 FPS. In terms of crack detection ability, the accuracy of the improved YOLOV5 reaches four pixels, and cracks of 1.2 mm can be detected in the experiment. Compared with the YOLOV7 model, the detection accuracy of the improved YOLOV5 model is increased by 15.4%. Compared with the YOLOV6 model, the calculated parameters of the improved YOLOV5 model are reduced by 59.25%. The proposed model is superior to other advanced models in crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权邴完成签到,获得积分10
刚刚
searchtodosth完成签到,获得积分10
刚刚
1秒前
zhang完成签到,获得积分10
1秒前
飞跃雁山院完成签到,获得积分10
1秒前
1秒前
fancyyyy完成签到,获得积分10
2秒前
Wei发布了新的文献求助30
2秒前
科研助手6应助小明采纳,获得20
3秒前
3秒前
权邴发布了新的文献求助10
3秒前
proteo发布了新的文献求助10
3秒前
久久一零完成签到,获得积分10
4秒前
4秒前
4秒前
耍酷定帮完成签到,获得积分10
5秒前
一斤不是一吨完成签到,获得积分10
5秒前
5秒前
5秒前
可爱的函函应助任鹰采纳,获得10
6秒前
6秒前
虚拟的半梦完成签到,获得积分10
6秒前
Naixichaohaohe完成签到,获得积分10
7秒前
7秒前
7秒前
FashionBoy应助付宗涛采纳,获得50
7秒前
青塘龙仔发布了新的文献求助10
7秒前
十三应助陈媛采纳,获得10
8秒前
XxxxxxENT发布了新的文献求助10
8秒前
yufanhui应助MAIDANG采纳,获得10
8秒前
柠子完成签到 ,获得积分10
8秒前
开朗的蝴蝶完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
JL发布了新的文献求助10
9秒前
9秒前
科研通AI5应助江峰采纳,获得10
9秒前
10秒前
思卉完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790087
求助须知:如何正确求助?哪些是违规求助? 3334781
关于积分的说明 10272224
捐赠科研通 3051278
什么是DOI,文献DOI怎么找? 1674537
邀请新用户注册赠送积分活动 802651
科研通“疑难数据库(出版商)”最低求助积分说明 760828