ACE-MEF: Adaptive Clarity Evaluation-Guided Network With Illumination Correction for Multi-Exposure Image Fusion

清晰 计算机科学 能见度 人工智能 计算机视觉 纹理(宇宙学) 图像(数学) 模式识别(心理学) 光学 生物化学 化学 物理
作者
Kangle Wu,Jun Chen,Yang Yu,Jiayi Ma
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8103-8118 被引量:5
标识
DOI:10.1109/tmm.2022.3233299
摘要

For a natural scene with nonuniform environment light, the captured visible images are always under- or over-exposed because of the limited dynamic range of digital imaging devices. Multi-exposure image fusion (MEF) is a mainstream and effective solution. For a local region that has friendly visual effect in one exposure setting but extremely bad-exposed in another, most existing MEF methods have the ability to transfer the scene detail information to the fused images. However, they will be affected by the over-high or -low light inevitably thus resulting in local visibility reduction. To address this issue, we propose an adaptive clarity evaluation-guided network with illumination correction for MEF in a coarse-to-fine manner, which is termed as ACE-MEF. To be specific, our ACE-MEF is mainly composed of two modules: clarity preservation network (CPN) and illumination adjustment network (IAN). Based on the adaptive clarity evaluation, CPN could be trained to coarsely preserve the environment light and texture details of the clearer regions in source images. Therefore, the need for labeled reference images that are time-consuming to obtain could be mitigated. By measuring the parameter maps of gamma function, IAN is able to refine and correct the local bad-exposed regions so that more details could be further revealed. Extensive experiments demonstrate that our method outperforms multiple state-of-the-art algorithms qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花泽类发布了新的文献求助10
刚刚
贾春艳完成签到,获得积分10
刚刚
BaiALin关注了科研通微信公众号
1秒前
accept关注了科研通微信公众号
1秒前
aaa完成签到,获得积分10
1秒前
钱钱完成签到,获得积分10
2秒前
狸子发布了新的文献求助10
2秒前
上上谦完成签到,获得积分10
2秒前
2秒前
SYLH应助yyyyyyyyyyyiiii采纳,获得20
3秒前
NexusExplorer应助zzcc采纳,获得10
4秒前
4秒前
wangklvin完成签到,获得积分10
4秒前
4秒前
Orange应助小卒采纳,获得10
6秒前
忧心的翅膀完成签到 ,获得积分10
6秒前
6秒前
摆摆发布了新的文献求助10
6秒前
orixero应助wangklvin采纳,获得10
7秒前
lala发布了新的文献求助10
7秒前
哈哈妮完成签到,获得积分10
7秒前
齐多达发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
看不懂完成签到 ,获得积分10
10秒前
曹杨磊完成签到,获得积分10
11秒前
ruochenzu发布了新的文献求助30
11秒前
11秒前
狸子完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
爆米花应助浩二采纳,获得10
13秒前
看不懂发布了新的文献求助10
13秒前
清欢完成签到,获得积分10
14秒前
junmahmu完成签到,获得积分10
14秒前
15秒前
叉叉茶发布了新的文献求助10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139251
求助须知:如何正确求助?哪些是违规求助? 3676140
关于积分的说明 11620152
捐赠科研通 3370289
什么是DOI,文献DOI怎么找? 1851331
邀请新用户注册赠送积分活动 914485
科研通“疑难数据库(出版商)”最低求助积分说明 829253