A fault diagnosis method based on feature-level fusion of multi-sensor information for rotating machinery

计算机科学 特征(语言学) 断层(地质) 人工智能 模式识别(心理学) 卷积神经网络 噪音(视频) 特征提取 语言学 图像(数学) 地质学 哲学 地震学
作者
Tianyu Gao,Jingli Yang,Baoqin Zhang,Yunlu Li,Huiyuan Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 036109-036109 被引量:10
标识
DOI:10.1088/1361-6501/ad1673
摘要

Abstract Traditionally, most fault diagnosis work on rotating machinery is carried out on single sensor datasets. However, the single feature source may suffer from missing or inaccurate features, which is especially sluggish for fault diagnosis tasks under noise interference. Feature-level fusion of multi-sensor information can obtain more comprehensive and abundant feature information, while improving the feature discrimination. Therefore, through feature-level fusion of multi-sensor information, a parallel multi-scale attentional convolutional neural network (PMSACNN) is proposed in this paper to achieve rotating machinery fault diagnosis. A dilated wide convolutional layer is designed to extract the short-time features of signals with noise by performing sparse sampling on them. The multi-scale structure is constructed to capture the diversity feature information of signals, and the feature-level stitching of multi-sensor information is realized by the parallel input mechanism. Feature fusion is achieved by adaptively correcting the importance of different channel features by using channel attention. The global averaging pooling operation is introduced to reduce the number of parameters and improve the efficiency of the model operation. The effectiveness of PMSACNN is verified by using the bearing dataset acquired from the mechanical comprehensive diagnosis simulation platform. The experimental results indicate that the proposed method outperforms the existing methods of this field in terms of fault diagnosis accuracy and noise immunity, which can improve the reliability and safety of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
李在佛甚么关注了科研通微信公众号
1秒前
2秒前
今后应助毕瑞欣采纳,获得10
2秒前
慕青应助曾阿牛采纳,获得10
2秒前
科研通AI5应助薯条采纳,获得30
3秒前
wanci应助Folger采纳,获得30
3秒前
Alpha发布了新的文献求助10
3秒前
laoleigang完成签到,获得积分10
5秒前
lorryliu发布了新的文献求助10
5秒前
纯真沛儿发布了新的文献求助10
5秒前
xxxx发布了新的文献求助10
5秒前
XXY完成签到,获得积分10
6秒前
华仔应助橙子采纳,获得10
6秒前
情怀应助crillzlol采纳,获得10
6秒前
7秒前
7秒前
lemonyu发布了新的文献求助10
8秒前
有趣的灵魂完成签到,获得积分10
9秒前
自由十三完成签到 ,获得积分10
9秒前
浮游给李fr的求助进行了留言
10秒前
12秒前
鱼子西发布了新的文献求助10
12秒前
13秒前
14秒前
一只鱼完成签到,获得积分10
14秒前
乐乐应助火焰鼠采纳,获得10
14秒前
15秒前
15秒前
聪慧小霜应助木木采纳,获得10
15秒前
烟花应助木木采纳,获得10
15秒前
小蘑菇应助lorryliu采纳,获得10
16秒前
dx完成签到,获得积分10
17秒前
薯条发布了新的文献求助30
17秒前
kento发布了新的文献求助100
17秒前
完美世界应助暴躁的咖啡采纳,获得10
17秒前
英姑应助lele采纳,获得10
18秒前
wanwan发布了新的文献求助10
18秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972