A change point detection integrated remaining useful life estimation model under variable operating conditions

变更检测 变量(数学) 计算机科学 估计 人工智能 控制理论(社会学) 工程类 数学 控制(管理) 数学分析 系统工程
作者
Anushiya Arunan,Yan Qin,Xiaoli Li,Chau Yuen
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:144: 105840-105840 被引量:9
标识
DOI:10.1016/j.conengprac.2023.105840
摘要

By informing the onset of the degradation process, health status evaluation serves as a significant preliminary step for reliable remaining useful life (RUL) estimation of complex equipment. However, existing works rely on a priori knowledge to roughly identify the starting time of degradation, termed the change point, which overlooks individual degradation characteristics of devices working in variable operating conditions. Consequently, reliable RUL estimation for devices under variable operating conditions is challenging as different devices exhibit heterogeneous and frequently changing degradation dynamics. This paper proposes a novel temporal dynamics learning-based model for detecting change points of individual devices, even under variable operating conditions, and utilises the learnt change points to improve the RUL estimation accuracy. During offline model development, the multivariate sensor data are decomposed to learn fused temporal correlation features that are generalisable and representative of normal operation dynamics across multiple operating conditions. Monitoring statistics and control limit thresholds for normal behaviour are dynamically constructed from these learnt temporal features for the unsupervised detection of device-level change points. The detected change points then inform the degradation data labelling for training a long short-term memory (LSTM)-based RUL estimation model. During online monitoring, the temporal correlation dynamics of a query device is monitored for breach of the control limit derived in offline training. If a change point is detected, the device’s RUL is estimated with the well-trained offline model for early preventive action. Using C-MAPSS turbofan engines as the case study, the proposed method improved the accuracy by 5.6% and 7.5% for two scenarios with six operating conditions, when compared to existing LSTM-based RUL estimation models that do not consider heterogeneous change points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助泥丸不丸采纳,获得10
1秒前
胡导家的菜狗完成签到,获得积分10
1秒前
Jasper应助ppprotein采纳,获得10
1秒前
猫咪老师应助一小只采纳,获得30
2秒前
2秒前
3秒前
完美世界应助蔡继海采纳,获得10
3秒前
milan001发布了新的文献求助10
4秒前
4秒前
Nemo完成签到 ,获得积分10
4秒前
6秒前
赘婿应助小树采纳,获得10
7秒前
8秒前
boob发布了新的文献求助30
8秒前
穿纸发布了新的文献求助10
9秒前
嘎啦嘎啦发布了新的文献求助10
9秒前
10秒前
12秒前
hhx发布了新的文献求助10
13秒前
栖衡完成签到,获得积分10
14秒前
super发布了新的文献求助10
14秒前
15秒前
xd发布了新的文献求助10
15秒前
张玺给张玺的求助进行了留言
15秒前
蔡继海发布了新的文献求助10
16秒前
小白不白发布了新的文献求助10
17秒前
嘎啦嘎啦完成签到,获得积分10
17秒前
怡然芷蝶发布了新的文献求助10
19秒前
20秒前
21秒前
Bebetter发布了新的文献求助10
22秒前
佰斯特威发布了新的文献求助10
23秒前
23秒前
SciGPT应助困得睡不着采纳,获得10
24秒前
搜集达人应助清清采纳,获得10
26秒前
26秒前
26秒前
lu完成签到,获得积分10
27秒前
一一完成签到 ,获得积分10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787319
求助须知:如何正确求助?哪些是违规求助? 3332927
关于积分的说明 10258351
捐赠科研通 3048347
什么是DOI,文献DOI怎么找? 1673093
邀请新用户注册赠送积分活动 801623
科研通“疑难数据库(出版商)”最低求助积分说明 760303