Beetle colony optimization algorithm‐based node clustering scheme for efficient data dissemination in vehicular ad hoc networks

计算机科学 节点(物理) 聚类分析 计算机网络 群体智能 无线自组网 车载自组网 架空(工程) 分布式计算 路由协议 吞吐量 群体行为 布线(电子设计自动化) 算法 无线 粒子群优化 人工智能 电信 操作系统 工程类 结构工程
作者
Gopinath Nithyanandam,Chinnasamy Ambayiram,Balasubramaniam Natarajan
出处
期刊:International Journal of Communication Systems [Wiley]
标识
DOI:10.1002/dac.5680
摘要

Summary Vehicular ad hoc networks (VANETs) are the ultimate solution for preventing road accidents, which result in the loss of precious human life worldwide. In this context, effective communication between the vehicular nodes is essential due to the varying network topology and high vehicular mobility inherent with VANETs. Cluster‐based routing is identified to be a significant approach for achieving efficient routing and improving communication proficiency in VANETs. In this paper, a beetle colony optimization algorithm–based clustering scheme (BCOACS) is proposed for generating optimized clusters for facilitating reliable data dissemination. This BCOACS algorithm includes two vital strategies such as beetle antenna search (BAS) and swarm intelligence for attaining inter‐cluster and intra‐cluster communications. In specific, BAS strategy that includes random search attributed toward gradient direction is used for intra‐cluster communication without using the complete amount of gradient information. On the other hand, a swarm intelligence strategy that encompasses a collective approach of self‐organized and decentralized agents is used for inter‐cluster communication with the view to minimize the load on each cluster head (CH) and to extend the clusters' lifetime. The simulation outcomes of the proposed BCOACS scheme confirmed improved performance in optimizing the number of constructed clusters independent of the increase in the network grid size, transmission range, and number of vehicular nodes in the network compared to the benchmarked approaches. The results also confirmed that the proposed BCOACS scheme achieved a maximized throughput of 13.42%, with reduced delay and protocol overhead of 18.96% and 19.45%, better than the benchmarked schemes used for investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助杜先生采纳,获得10
刚刚
脑洞疼应助愿好采纳,获得30
刚刚
1秒前
1秒前
火星上的夏青完成签到,获得积分10
1秒前
可爱的函函应助yy采纳,获得10
1秒前
酷波er应助yy采纳,获得10
2秒前
所所应助yy采纳,获得20
2秒前
zzz发布了新的文献求助10
3秒前
小饼干发布了新的文献求助10
3秒前
阿源完成签到,获得积分10
4秒前
4秒前
迷了路的猫完成签到,获得积分10
4秒前
st完成签到,获得积分20
4秒前
顾矜应助白云采纳,获得10
5秒前
zhengts完成签到 ,获得积分10
5秒前
咚咚发布了新的文献求助10
6秒前
yy发布了新的文献求助10
6秒前
Hello应助Desperate采纳,获得10
6秒前
6秒前
李小胖发布了新的文献求助10
6秒前
凶狠的小熊猫完成签到,获得积分10
7秒前
俺是小兰仔完成签到 ,获得积分10
8秒前
8秒前
8秒前
奥利奥完成签到,获得积分10
8秒前
lin123完成签到,获得积分10
9秒前
SciGPT应助_蝴蝶小姐采纳,获得10
9秒前
孤梦落雨发布了新的文献求助10
9秒前
kingwsws发布了新的文献求助10
10秒前
Jack完成签到,获得积分0
10秒前
余晖应助zxiaoo采纳,获得10
10秒前
热心的梦桃完成签到,获得积分10
10秒前
科研通AI6应助长风采纳,获得10
10秒前
11秒前
11秒前
12秒前
清浅完成签到,获得积分10
12秒前
zkkkkk完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352218
求助须知:如何正确求助?哪些是违规求助? 4485082
关于积分的说明 13961728
捐赠科研通 4384899
什么是DOI,文献DOI怎么找? 2409213
邀请新用户注册赠送积分活动 1401676
关于科研通互助平台的介绍 1375225