Maturity identification and category determination method of broccoli based on semantic segmentation models

人工智能 成熟度(心理) 鉴定(生物学) 像素 计算机科学 分割 模式识别(心理学) 块(置换群论) 计算机视觉 数学 几何学 心理学 植物 生物 发展心理学
作者
Shuo Kang,Dongfang Li,Boliao Li,Jianxi Zhu,Sifang Long,Jun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108633-108633 被引量:8
标识
DOI:10.1016/j.compag.2024.108633
摘要

The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璐璇完成签到,获得积分10
1秒前
小小发布了新的文献求助10
2秒前
单身的觅儿完成签到,获得积分20
2秒前
364739814完成签到,获得积分10
2秒前
义气的钥匙完成签到,获得积分10
4秒前
不会吹口哨完成签到,获得积分10
4秒前
ddsyg126完成签到,获得积分10
6秒前
6秒前
乖乖发布了新的文献求助10
10秒前
口香糖探长完成签到 ,获得积分10
11秒前
5High_0完成签到 ,获得积分10
13秒前
娜娜完成签到 ,获得积分10
14秒前
JJ完成签到,获得积分10
14秒前
JJ发布了新的文献求助10
17秒前
无情听南完成签到,获得积分10
19秒前
微笑的天抒完成签到,获得积分10
20秒前
冰蓝完成签到 ,获得积分10
21秒前
21秒前
鲤鱼寄容完成签到 ,获得积分10
21秒前
22秒前
姜露萍完成签到,获得积分10
25秒前
fun发布了新的文献求助10
25秒前
1111完成签到,获得积分10
27秒前
27秒前
Summer完成签到,获得积分10
28秒前
现实的俊驰完成签到 ,获得积分10
28秒前
xhd183完成签到 ,获得积分10
28秒前
31秒前
沐沐完成签到,获得积分20
31秒前
明亮白筠完成签到,获得积分10
31秒前
飒co发布了新的文献求助10
32秒前
深情安青应助satchzhao采纳,获得10
35秒前
李健应助文献狂人采纳,获得10
35秒前
HalaMadrid发布了新的文献求助10
36秒前
38秒前
fun完成签到,获得积分10
39秒前
叼面包的数学狗完成签到 ,获得积分10
40秒前
uouuo完成签到 ,获得积分10
40秒前
微义完成签到,获得积分10
43秒前
舒窈完成签到 ,获得积分10
43秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726