Maturity identification and category determination method of broccoli based on semantic segmentation models

人工智能 成熟度(心理) 鉴定(生物学) 像素 计算机科学 分割 模式识别(心理学) 块(置换群论) 计算机视觉 数学 心理学 发展心理学 植物 几何学 生物
作者
Shuo Kang,Dongfang Li,Boliao Li,Jianxi Zhu,Sifang Long,Jun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108633-108633 被引量:14
标识
DOI:10.1016/j.compag.2024.108633
摘要

The critical technology of the broccoli selective harvesting robot centres around the maturity identification and determination of broccoli heads suitable for harvesting. To address this technical challenge, a machine vision method based on semantic segmentation models is proposed in this research. This method enables broccoli head detection, pixel-level identification, determination of maturity categories, and precise localisation of suitable heads for harvesting, thus better aligning with practical harvesting scenarios. The maturity identification method is based on the DeepLabV3+ network model, which classifies pixel points into four categories: immature, semi-mature, mature, and hypermature. Furthermore, targeted enhancements to the network structure have been incorporated to accommodate the unique maturity characteristics of broccoli. MobileNetV2 contributes to the real-time detection of multiple broccoli heads within the view of camera. The Dense Atrous Spatial Pyramid Pooling (DASPP) module enhances the capability of recognising multiscale features of broccoli, and the Convolutional Block Attention Module (CBAM) further improves the integration of maturity information. The effectiveness of the targeted enhancements has been validated through ablation experiments. The semantic segmentation was successfully applied to broccoli maturity identification for the first time by incorporating a self-designed category determination module. The proposed algorithm achieves a mean intersection over union (mIoU) exceeding 57.9 %, the pixel accuracy (PA) reaching 98.56 %, and the mean category prediction accuracy (mCPA) of 70.93 %. These performance metrics outperform established algorithms such as BASNet, DeepLabV3+, and UNet. This advancement has resulted in an enhancement in the accuracy of maturity identification and a substantial reduction in computational expenses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽的欢乐完成签到 ,获得积分10
1秒前
1秒前
StonesKing完成签到,获得积分20
2秒前
2秒前
2秒前
15发布了新的文献求助10
3秒前
刘晓丹发布了新的文献求助10
3秒前
rh1006完成签到,获得积分10
3秒前
李hy完成签到,获得积分10
3秒前
浮游应助林慕然2023采纳,获得10
3秒前
4秒前
CodeCraft应助只要平凡采纳,获得10
4秒前
共享精神应助littleE采纳,获得10
4秒前
了了发布了新的文献求助10
4秒前
5秒前
杨洪彬完成签到,获得积分10
5秒前
Dale完成签到,获得积分10
5秒前
5秒前
7秒前
科研小子完成签到,获得积分10
7秒前
小小完成签到,获得积分10
7秒前
爆米花应助qian采纳,获得10
7秒前
8秒前
8秒前
YZJing完成签到,获得积分10
8秒前
Helen完成签到,获得积分10
8秒前
Akim应助刘晓丹采纳,获得10
8秒前
小蘑菇应助无颜猪采纳,获得10
8秒前
一丢丢完成签到,获得积分10
9秒前
zhuzhu完成签到,获得积分10
10秒前
丘比特应助lk1126采纳,获得10
10秒前
胖莹完成签到 ,获得积分10
11秒前
11秒前
浮游应助冷雨夜采纳,获得10
11秒前
cecilycen完成签到,获得积分10
11秒前
小金鱼发布了新的文献求助10
12秒前
12秒前
开心的小泽完成签到 ,获得积分10
12秒前
颜靖仇发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4755459
求助须知:如何正确求助?哪些是违规求助? 4098982
关于积分的说明 12682204
捐赠科研通 3812896
什么是DOI,文献DOI怎么找? 2104875
邀请新用户注册赠送积分活动 1129831
关于科研通互助平台的介绍 1007749