Modeling temporal variation of soil acidity after the application of liming materials

变化(天文学) 环境科学 土壤pH值 土壤科学 土壤水分 天体物理学 物理
作者
Hamza Jouichat,Lotfi Khiari,Jacques Gallichand,M.S. Ismail
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:240: 106050-106050
标识
DOI:10.1016/j.still.2024.106050
摘要

Soil acidification is a natural phenomenon that human activity can accelerate or manage. Acid soils limit plant growth by reducing nutrient availability and causing aluminum toxicity, significantly reducing crop production. Liming has proven efficient for increasing crop yield on acidic soils. Knowledge is required on the effect of liming on the soil pH dynamics to find the suitable material, application rate, timing, and method. The objective of this study was to develop a prediction model of soil pH temporal variations after lime application using data from the literature. A database was built from research results extracted from 16 scientific papers that provided data on soil acidity changes over time under different liming treatments. Machine learning (ML) was used to predict soil pH dynamics from eight predictive parameters: rate of application, time since application, neutralizing value (CCE), grind fineness (D50), pH measurement depth, soil acidity (pH prior to liming), the type of solution used for pH measurement (water or CaCl2) and the soil:solution ratio used to measure pH. Since soil pH fluctuates with seasons, all pH values were expressed as difference between the actual pH value and that of an unlimed control (ΔpH). The Random Forest (RF) algorithm was tested to predict ΔpH over time. On testing, we obtained an R2 between measured and predicted ΔpH values of 0.881 and an RMSE of 0.230. These results are excellent, considering the heterogeneity in soils, liming materials, and pedoclimatic conditions found in the 16 papers. The primary factors influencing ΔpH, ranked by their impact are application rate, time elapsed post-application, and lime characteristics including its grind fineness and neutralizing value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笨笨的弱发布了新的文献求助10
2秒前
Tian发布了新的文献求助10
3秒前
3秒前
霸气傲蕾发布了新的文献求助10
5秒前
5秒前
甜橙发布了新的文献求助10
5秒前
Moriarty完成签到,获得积分10
5秒前
5秒前
酸奶泡芙完成签到,获得积分10
6秒前
KANG完成签到,获得积分10
7秒前
Tana发布了新的文献求助10
8秒前
酷波er应助peili采纳,获得10
8秒前
沉心完成签到,获得积分10
8秒前
8秒前
10秒前
唯梦完成签到,获得积分10
10秒前
11秒前
科研通AI5应助su采纳,获得10
11秒前
12秒前
唯梦发布了新的文献求助10
12秒前
13秒前
gloria完成签到,获得积分10
14秒前
何处芳歇完成签到,获得积分10
14秒前
FF完成签到 ,获得积分10
15秒前
情怀应助fd163c采纳,获得10
15秒前
surgeon10发布了新的文献求助50
16秒前
16秒前
orixero应助科研小菜鸡采纳,获得10
17秒前
我是老大应助Dr_Yang采纳,获得10
17秒前
领导范儿应助苏信怜采纳,获得10
17秒前
jjgbmt完成签到 ,获得积分10
18秒前
18秒前
19秒前
传奇3应助Wendy采纳,获得10
20秒前
22秒前
zzzzzzy发布了新的文献求助10
22秒前
SYLH应助有机小鸟采纳,获得10
22秒前
22秒前
Agoni发布了新的文献求助20
23秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
请注意只有同济大学本校可以下载,求助同济大学博士学位论文,作者:王腾锐,导师:罗巍, 220
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831882
求助须知:如何正确求助?哪些是违规求助? 3374030
关于积分的说明 10483332
捐赠科研通 3093959
什么是DOI,文献DOI怎么找? 1703241
邀请新用户注册赠送积分活动 819322
科研通“疑难数据库(出版商)”最低求助积分说明 771423