Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis

轴突 感觉系统 神经科学 刺激 髓鞘 感觉剥夺 神经传导速度 生物神经网络 生物 化学 中枢神经系统
作者
Mihai Stancu,Hilde Wohlfrom,Martin W. Hess,Benedikt Grothe,Christian Leibold,Conny Kopp‐Scheinpflug
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (11)
标识
DOI:10.1073/pnas.2316439121
摘要

Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斗鱼飞鸟和俞完成签到,获得积分10
1秒前
所所应助淡定的松子采纳,获得10
1秒前
风中傻姑发布了新的文献求助10
2秒前
2秒前
独立卫生间完成签到,获得积分10
2秒前
ooseabiscuit完成签到,获得积分10
3秒前
Loooong应助PXP采纳,获得20
3秒前
秋雪瑶应助ZQJ采纳,获得10
3秒前
大头仙女完成签到 ,获得积分10
4秒前
高海燕发布了新的文献求助10
5秒前
简简单单完成签到,获得积分10
5秒前
Eric完成签到,获得积分10
8秒前
8秒前
开朗丹蝶完成签到,获得积分10
8秒前
wang完成签到,获得积分10
9秒前
Tin完成签到,获得积分10
9秒前
12秒前
司空紫雪发布了新的文献求助10
12秒前
顺利白桃完成签到,获得积分0
13秒前
qr完成签到,获得积分10
13秒前
phoenix完成签到 ,获得积分10
14秒前
猫猫侠完成签到,获得积分10
14秒前
清风完成签到 ,获得积分10
14秒前
大胆短靴应助胖胖橘采纳,获得50
15秒前
lancerimpp完成签到,获得积分10
15秒前
劉平果发布了新的文献求助30
15秒前
15秒前
shuaige32完成签到,获得积分10
16秒前
wanci应助无物采纳,获得30
16秒前
彦希完成签到 ,获得积分10
16秒前
16秒前
shen发布了新的文献求助10
16秒前
失眠的蓝完成签到,获得积分10
17秒前
再见了星空完成签到,获得积分10
17秒前
活力听兰完成签到,获得积分10
17秒前
Anyemzl完成签到,获得积分10
17秒前
21秒前
聪明宛完成签到 ,获得积分10
22秒前
果粒陈完成签到,获得积分10
22秒前
瞳梦完成签到,获得积分10
22秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2401596
求助须知:如何正确求助?哪些是违规求助? 2101133
关于积分的说明 5297610
捐赠科研通 1828774
什么是DOI,文献DOI怎么找? 911529
版权声明 560333
科研通“疑难数据库(出版商)”最低求助积分说明 487293