重整化群
普遍性(动力系统)
统计物理学
缩放比例
拉普拉斯算子
订单(交换)
不变(物理)
粒度
重整化
数学
尺度不变性
方案(数学)
理论计算机科学
物理
计算机科学
数学物理
数学分析
量子力学
几何学
财务
经济
操作系统
作者
Marco Nurisso,Marta Morandini,Maxime Lucas,Francesco Vaccarino,Tommaso Gili,Giovanni Petri
出处
期刊:Cornell University - arXiv
日期:2024-01-01
被引量:1
标识
DOI:10.48550/arxiv.2401.11298
摘要
We propose a cross-order Laplacian renormalization group (X-LRG) scheme for arbitrary higher-order networks. The renormalization group is a pillar of the theory of scaling, scale-invariance, and universality in physics. An RG scheme based on diffusion dynamics was recently introduced for complex networks with dyadic interactions. Despite mounting evidence of the importance of polyadic interactions, we still lack a general RG scheme for higher-order networks. Our approach uses a diffusion process to group nodes or simplices, where information can flow between nodes and between simplices (higher-order interactions). This approach allows us (i) to probe higher-order structures, defining scale-invariance at various orders, and (ii) to propose a coarse-graining scheme. We demonstrate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI