Unsupervised Adaptive Fleet Battery Pack Fault Detection With Concept Drift Under Evolving Environment

故障检测与隔离 计算机科学 电池(电) 断层(地质) 实时计算 汽车工程 人工智能 工程类 地质学 功率(物理) 量子力学 物理 地震学 执行机构
作者
Xiaomeng Peng,Shiming Duan,Chaitanya Sankavaram,Xiaoning Jin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 2276-2288 被引量:3
标识
DOI:10.1109/tase.2024.3363002
摘要

Timely fault detection is critical for ensuring the safety and reliability of electric vehicle battery packs. Capturing the battery's normal behavior and identifying faults in a fleet operating under dynamic and evolving real-world conditions comes with challenges, including data imbalance, label unavailability, and concept drift. To address these challenges and enhance the robustness of fault detection in evolving environments, we propose an adaptive fleet-based fault detection method. This method comprises two key components. The first component is an OC-aware anomaly detection method, serving as a static model for robust anomaly detection. The second component includes a novel concept drift detection and adaptation mechanism that continuously monitors data distribution and the performance of the anomaly detection model. This mechanism identifies changes in the battery pack's normal behavior under evolving conditions. Our proposed concept drift detection method reduces false alarms and enhances noise robustness by integrating drift detection and drift isolation within a hierarchical structure. The effectiveness and robustness of the proposed method are validated using real-world in-field data. Note to Practitioners —Existing methods for identifying battery pack faults in electric vehicle (EV) fleets predominantly hinge on static models, deriving from either high-fidelity physics-based battery models or data-driven models trained on extensive labeled datasets. However, the detection performance of static models may degrade when concept drift occurs during real-time fleet monitoring. This paper introduces a novel adaptive fault detection method with an innovative concept drift detection and adaptation mechanism, all without the need for labeled or faulty samples. Furthermore, the method can differentiate real battery faults from concept drift caused by changing operating conditions, significantly reducing false alarms during the model adaptation process. The robustness to unprecedented operating conditions in anomaly detection and the effectiveness of concept detection are validated in case studies using in-field fleet data. In future research, to enhance the efficiency of model retraining and conserve data storage resources, there is a desire to develop an incremental fault detection model that does not require the retention of all historical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的凌丝完成签到,获得积分10
1秒前
阿坤完成签到,获得积分10
3秒前
层层泡芙完成签到,获得积分10
4秒前
4秒前
念0完成签到 ,获得积分10
5秒前
6秒前
qqqq发布了新的文献求助10
8秒前
Ning00000完成签到 ,获得积分10
10秒前
标致小甜瓜完成签到,获得积分10
11秒前
XWY发布了新的文献求助10
13秒前
15秒前
17秒前
华仔应助盼盼采纳,获得10
17秒前
zxc关注了科研通微信公众号
18秒前
佰斯特威发布了新的文献求助10
19秒前
云竹丶完成签到,获得积分10
21秒前
田様应助朴素的士晋采纳,获得10
23秒前
小伊娃应助karstbing采纳,获得30
23秒前
Life完成签到,获得积分10
23秒前
1177发布了新的文献求助10
24秒前
煎饼果子不加葱完成签到,获得积分10
24秒前
大勺完成签到 ,获得积分10
24秒前
24秒前
Iolite完成签到,获得积分10
24秒前
25秒前
26秒前
linkman应助Chaosgreat采纳,获得20
29秒前
30秒前
shidewu完成签到,获得积分10
30秒前
30秒前
润喉糖发布了新的文献求助10
30秒前
zxc发布了新的文献求助10
31秒前
小伊娃应助理li采纳,获得10
34秒前
Mr-Li-Happy完成签到,获得积分10
34秒前
一九完成签到,获得积分10
34秒前
XWY完成签到,获得积分20
35秒前
Lucas应助谢佳冀采纳,获得10
36秒前
慕青应助无情冷珍采纳,获得10
36秒前
Zzzzz发布了新的文献求助10
37秒前
bkagyin应助wang97采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333882
求助须知:如何正确求助?哪些是违规求助? 3845389
关于积分的说明 12011387
捐赠科研通 3485934
什么是DOI,文献DOI怎么找? 1913504
邀请新用户注册赠送积分活动 956643
科研通“疑难数据库(出版商)”最低求助积分说明 857317