Advancing Realistic Precipitation Nowcasting With a Spatiotemporal Transformer-Based Denoising Diffusion Model

临近预报 计算机科学 采样(信号处理) 机器学习 人工智能 数据挖掘 气象学 地理 计算机视觉 滤波器(信号处理)
作者
Zewei Zhao,Xichao Dong,Yupei Wang,Cheng Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:10
标识
DOI:10.1109/tgrs.2024.3355755
摘要

Recent advances in deep learning have significantly improved the quality of precipitation nowcasting. Current approaches are either based on deterministic or generative models. Deterministic models perceive nowcasting as a spatiotemporal prediction task, relying on distance functions like L2-norm loss for training. While improving meteorological evaluation metrics, they inevitably produce blurry predictions with no reference value. In contrast, generative models aim to capture realistic precipitation distributions and generate nowcasting products by sampling within these distributions. However, designing a generative model that produces realistic samples satisfying meteorological evaluation indexes in real-time remains challenging, given the triple dilemma of generative learning: achieving high sample quality, mode coverage, and fast sampling simultaneously. Recently, diffusion models exhibit impressive sample quality but suffer from time-consuming sampling, severely hindering their application in nowcasting. Moreover, samples generated by the U-Net denoiser of current denoising diffusion model are prone to yield poor meteorological evaluation metrics such as CSI. To this end, we propose a spatiotemporal Transformer-based conditional diffusion model with rapid diffusion strategy. Concretely, we incorporate an adversarial mapping-based rapid diffusion strategy to overcome the time-consuming sampling process for standard diffusion models, enabling timely nowcasting. Additionally, a meticulously designed spatiotemporal Transformer-based denoiser is incorporated into diffusion models, remedying the defects in U-Net denoisers by estimating diffusion scores and improving nowcasting skill scores. Case studies of typical weather events such as thunderstorms, as well as quantitative indicators, demonstrate the effectiveness of the proposed method in generating sharper and more precise precipitation forecasts while maintaining satisfied meteorological evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
感动的海豚完成签到,获得积分10
1秒前
li完成签到 ,获得积分10
1秒前
changping应助JL采纳,获得10
1秒前
bkagyin应助好好好采纳,获得30
1秒前
脑洞疼应助爱笑的天空采纳,获得10
2秒前
kk完成签到 ,获得积分10
2秒前
4秒前
L_Cheung完成签到,获得积分10
5秒前
H_H完成签到,获得积分10
6秒前
PsyQin完成签到,获得积分10
7秒前
fxx发布了新的文献求助10
9秒前
jias完成签到,获得积分10
9秒前
10秒前
乐乐应助安安采纳,获得10
13秒前
FashionBoy应助天棱采纳,获得10
14秒前
欣喜书蕾完成签到,获得积分10
15秒前
布鲁鲁发布了新的文献求助20
16秒前
幽默雨完成签到,获得积分10
17秒前
kytm完成签到,获得积分10
19秒前
烟花应助荷包蛋采纳,获得20
20秒前
吼住吼住完成签到 ,获得积分10
24秒前
传奇3应助Tycoon采纳,获得10
25秒前
丘比特应助布鲁鲁采纳,获得10
26秒前
29秒前
杰杰大叔发布了新的文献求助10
29秒前
田様应助Zy采纳,获得10
30秒前
春风吹叁旬完成签到,获得积分20
32秒前
33秒前
34秒前
35秒前
orixero应助平淡的冰巧采纳,获得10
36秒前
37秒前
李密完成签到 ,获得积分10
38秒前
白日做梦完成签到 ,获得积分10
38秒前
mm_zxh完成签到,获得积分10
38秒前
阿航完成签到,获得积分10
39秒前
小许发布了新的文献求助10
39秒前
一勺晚安z发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160