An efficient framework for controllable micromixer design through the fusion of data-driven modeling and machine learning insights: Numerical and experimental analysis

混合器 微通道 微流控 可控性 参数统计 迷惑 实验设计 计算机科学 生物系统 纳米技术 机械工程 材料科学 工程类 数学 生物 统计 应用数学
作者
Faridoddin Hassani,Farhad Sadegh Moghanlou,Asgar Minaei,Mohammad Vajdi,Ali Golshani,Afshin Kouhkord,Tohid Dehghani
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:13
标识
DOI:10.1063/5.0190888
摘要

Micromixers are inevitable components in microfluidics, micro-electro-mechanical devices, and numerous bio-chemical assays. By assays, we mean diverse analytical procedures encompassing gene engineering, the manipulation of genetic material; nanoparticle synthesis, focusing on the controlled creation of nanoparticles; and cell lysis, involving cell membranes disruption for the release of intracellular substances for diagnostic purposes. In these assays, the homogeneous mixture of two or more fluids is crucial. However, designing an efficient micromixer providing high homogeneity and low pressure drop, while maintaining controllability, is challenging. Controllability refers to the design of a micro-system tailored to meet the specific requirements of a given assay. This study proposes a controllable framework, combining machine learning and statistical modeling. The framework begins with the generation of a reference parametric micro-structure, herein a microchannel with L-shaped baffles and featuring seven variables. A response surface method, a data-driven modeling scheme, is used to establish functional relationships between design variables and objective functions. The study reveals that the baffle height significantly impacts the system functionality, increasing the mixing index by over 40% and the pressure drop by more than 220% when reaching its upper limit. Dean-like secondary vortexes are generated in the microchannel at Re = 10, demonstrating the efficiency of the implemented baffles. Subsequently, multi-objective optimization methods, non-dominated sorting genetic algorithm (NSGA-II) and differential evolution (DE), are employed, with adaptable variable constraints. Comparative analysis of the methods shows that DE finds superior optimum solutions in fewer iterations. Finally, an optimum structure is fabricated using soft lithography, and experimental tests are conducted for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明白将军发布了新的文献求助10
刚刚
Ava应助健壮小懒猪采纳,获得10
刚刚
浮游应助杨惠文采纳,获得10
刚刚
聪慧道罡完成签到,获得积分20
刚刚
WW完成签到,获得积分10
1秒前
呆萌芙蓉发布了新的文献求助10
1秒前
王鹏发布了新的文献求助10
1秒前
Darker发布了新的文献求助10
1秒前
灵巧的忻发布了新的文献求助10
2秒前
2秒前
ChatGDP_deepsuck完成签到,获得积分10
2秒前
爆米花应助小杨采纳,获得10
2秒前
tuanzi完成签到,获得积分10
2秒前
Bryce完成签到 ,获得积分10
2秒前
wenjing发布了新的文献求助10
3秒前
浮游应助messi采纳,获得10
3秒前
Orange应助尘屿采纳,获得10
3秒前
ZYJ发布了新的文献求助10
3秒前
3秒前
mnliao完成签到,获得积分10
4秒前
幸福胡萝卜完成签到,获得积分10
4秒前
5秒前
小张完成签到 ,获得积分10
6秒前
cooljj发布了新的文献求助10
6秒前
奶昔完成签到,获得积分10
6秒前
ll发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
所所应助Pursue采纳,获得10
7秒前
ro发布了新的文献求助10
7秒前
哔哩哔哩往上爬完成签到,获得积分10
7秒前
执着易绿完成签到,获得积分10
8秒前
8秒前
NICO关注了科研通微信公众号
8秒前
付晓阳发布了新的文献求助10
9秒前
丹dan完成签到,获得积分10
9秒前
知性的土豆完成签到,获得积分10
9秒前
10秒前
ZYC完成签到,获得积分10
10秒前
领导范儿应助羽毛采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068619
求助须知:如何正确求助?哪些是违规求助? 4290188
关于积分的说明 13366569
捐赠科研通 4109975
什么是DOI,文献DOI怎么找? 2250576
邀请新用户注册赠送积分活动 1255901
关于科研通互助平台的介绍 1188438