Potential of Metal Artifact Reduction (MAR) and Deep Learning-based Reconstruction (DLR) algorithms integration in CT Metal Artifact Correction: A review

工件(错误) 扫描仪 图像质量 迭代重建 计算机视觉 还原(数学) 降噪 噪音(视频) 图像分辨率 算法 人工智能 计算机科学 图像(数学) 数学 几何学
作者
M.M. Njiti,Noor Diyana Osman,Syahir Mansor,Nor Ain Rabaiee,Mohd Zahri Abdul Aziz
出处
期刊:Radiation Physics and Chemistry [Elsevier BV]
卷期号:218: 111541-111541 被引量:5
标识
DOI:10.1016/j.radphyschem.2024.111541
摘要

Computed Tomography (CT) is essential for precise medical diagnostics, yet metal implants often induce disruptive image artifacts. Metal Artifact Reduction (MAR) algorithms have emerged to enhance CT image quality by mitigating these artifacts. This review emphasizes the significance of quantifying MAR algorithms, details common quantification metrics, and presents findings from diverse CT scanner studies. MAR techniques effectively reduce metal artifacts and enhance CT imaging. Metrics like noise levels, Contrast-to-Noise ratio (CNR), CT number accuracy, and Metal Artifact Index (MAI) quantify their efficacy. Varied CT scanner experiments with diverse metal implants display improved CT number accuracy, noise reduction, and artifact management through MAR algorithms. However, secondary artifacts and altered metal size accuracy are potential drawbacks that need attention. Deep Learning-based Reconstruction (DLR) is an expanding approach using Artificial Intelligence (AI) for CT image reconstruction. DLR generates low-dose CT images with high spatial resolution. Recent clinical deployments highlight DLR's potential in generating low-noise, texture-rich images, and superior artifact reduction. Moreover, DLR techniques exhibit promise in addressing beam hardening artifacts. While MAR algorithms have revolutionized CT imaging, DLR techniques are emerging as potential alternatives. Current DLR implementations like TrueFidelity and Advanced Intelligent Clear-IQ Engine (AiCE) demonstrate promising outcomes. However, challenges in implementation and machine learning model reliability require further exploration. In conclusion, MAR algorithms enhance CT imaging quality by rectifying artifacts near metal implants, while DLR methods offer a promising path for radiation dose reduction and image refinement. Combining both approaches might pave the way for future CT imaging advancements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo末流主应助被淹死的鱼采纳,获得10
1秒前
qw发布了新的文献求助10
2秒前
thousandlong完成签到,获得积分10
2秒前
Pretrial完成签到 ,获得积分10
2秒前
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
ZhouYW应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
知世发布了新的文献求助10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
Helen发布了新的文献求助10
4秒前
稻草人发布了新的文献求助10
5秒前
5秒前
WZ完成签到,获得积分20
6秒前
yulk发布了新的文献求助10
7秒前
sibo完成签到,获得积分10
7秒前
MM发布了新的文献求助10
9秒前
xiaodong发布了新的文献求助10
9秒前
11秒前
aixiaoming0503完成签到,获得积分10
12秒前
ruxu完成签到,获得积分10
13秒前
Helen完成签到,获得积分20
13秒前
科研通AI5应助稻草人采纳,获得10
13秒前
Li应助yulk采纳,获得10
15秒前
17秒前
20秒前
21秒前
laura完成签到,获得积分10
21秒前
领导范儿应助柴胡采纳,获得10
23秒前
23秒前
23秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150