Systematic review and meta-analysis of prediction models used in cervical cancer

宫颈癌 荟萃分析 医学 计算机科学 内科学 癌症 数据科学
作者
Ashish Kumar Jha,Sneha Mithun,Umesh B. Sherkhane,Vinay Jaiswar,Biche Osong,Nilendu Purandare,Sadhana Kannan,Kumar Prabhash,Sudeep Gupta,Ben Vanneste,Venkatesh Rangarajan,André Dekker,Leonard Wee
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:139: 102549-102549 被引量:34
标识
DOI:10.1016/j.artmed.2023.102549
摘要

Cervical cancer is one of the most common cancers in women with an incidence of around 6.5 % of all the cancer in women worldwide. Early detection and adequate treatment according to staging improve the patient's life expectancy. Outcome prediction models might aid treatment decisions, but a systematic review on prediction models for cervical cancer patients is not available. We performed a systematic review for prediction models in cervical cancer following PRISMA guidelines. Key features that were used for model training and validation, the endpoints were extracted from the article and data were analyzed. Selected articles were grouped based on prediction endpoints i.e. Group1: Overall survival, Group2: progression-free survival; Group3: recurrence or distant metastasis; Group4: treatment response; Group5: toxicity or quality of life. We developed a scoring system to evaluate the manuscript. As per our criteria, studies were divided into four groups based on scores obtained in our scoring system, the Most significant study (Score > 60 %); Significant study (60 % > Score > 50 %); Moderately Significant study (50 % > Score > 40 %); least significant study (score < 40 %). A meta-analysis was performed for all the groups separately. The first line of search selected 1358 articles and finally 39 articles were selected as eligible for inclusion in the review. As per our assessment criteria, 16, 13 and 10 studies were found to be the most significant, significant and moderately significant respectively. The intra-group pooled correlation coefficient for Group1, Group2, Group3, Group4, and Group5 were 0.76 [0.72, 0.79], 0.80 [0.73, 0.86], 0.87 [0.83, 0.90], 0.85 [0.77, 0.90], 0.88 [0.85, 0.90] respectively. All the models were found to be good (prediction accuracy [c-index/AUC/R2] >0.7) in endpoint prediction. Prediction models of cervical cancer toxicity, local or distant recurrence and survival prediction show promising results with reasonable prediction accuracy [c-index/AUC/R2 > 0.7]. These models should also be validated on external data and evaluated in prospective clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韧迹完成签到 ,获得积分0
3秒前
冷傲的如柏完成签到,获得积分10
3秒前
Yes0419完成签到,获得积分10
6秒前
冰兰阿托品完成签到,获得积分10
9秒前
平凡世界完成签到 ,获得积分10
10秒前
reset完成签到 ,获得积分10
11秒前
自渡完成签到 ,获得积分10
18秒前
QIANGYI完成签到 ,获得积分10
21秒前
FCL完成签到,获得积分10
24秒前
巧稚一生完成签到 ,获得积分10
24秒前
幽默的妍完成签到 ,获得积分10
28秒前
Jeffery426完成签到,获得积分10
31秒前
洁白的故人完成签到 ,获得积分10
31秒前
大气夜山完成签到 ,获得积分10
35秒前
舒心的青亦完成签到 ,获得积分10
36秒前
37秒前
点点完成签到 ,获得积分10
37秒前
DD完成签到 ,获得积分10
39秒前
砳熠完成签到 ,获得积分0
39秒前
qianci2009完成签到,获得积分10
40秒前
kkscanl完成签到 ,获得积分10
43秒前
menghongmei完成签到 ,获得积分10
43秒前
Superman完成签到 ,获得积分10
44秒前
滴滴完成签到 ,获得积分10
50秒前
laohu完成签到,获得积分10
52秒前
刘雨森完成签到 ,获得积分10
53秒前
稳重母鸡完成签到 ,获得积分10
56秒前
陶醉的代玉完成签到 ,获得积分10
59秒前
ZH完成签到 ,获得积分10
1分钟前
Titi完成签到 ,获得积分10
1分钟前
友好的小萱完成签到 ,获得积分10
1分钟前
明理的天抒完成签到 ,获得积分10
1分钟前
领导范儿应助Jieyu采纳,获得10
1分钟前
hello完成签到,获得积分10
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
Yiling完成签到,获得积分10
1分钟前
ihonest完成签到,获得积分0
1分钟前
wangsai0532完成签到,获得积分10
1分钟前
虚幻元风完成签到 ,获得积分10
1分钟前
小刺猬完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4472020
求助须知:如何正确求助?哪些是违规求助? 3931575
关于积分的说明 12196791
捐赠科研通 3586081
什么是DOI,文献DOI怎么找? 1971236
邀请新用户注册赠送积分活动 1009136
科研通“疑难数据库(出版商)”最低求助积分说明 902973