A Two-Stage Convolutional Neural Networks for Lung Nodule Detection

计算机科学 人工智能 卷积神经网络 联营 阶段(地层学) 模式识别(心理学) 分割 结核(地质) 深度学习 肺癌 假阳性率 全国肺筛查试验 还原(数学) 肺癌筛查 数学 病理 医学 古生物学 生物 几何学
作者
Haichao Cao,Hong Liu,Enmin Song,Guangzhi Ma,Renchao Jin,Xiangyang Xu,Tengying Liu,Chih‐Cheng Hung
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 1-1 被引量:139
标识
DOI:10.1109/jbhi.2019.2963720
摘要

Early detection of lung cancer is an effective way to improve the survival rate of patients. It is a critical step to have accurate detection of lung nodules in computed tomography (CT) images for the diagnosis of lung cancer. However, due to the heterogeneity of the lung nodules and the complexity of the surrounding environment, it is a challenge to develop a robust nodule detection method. In this study, we propose a two-stage convolutional neural networks (TSCNN) for lung nodule detection. The first stage based on the improved U-Net segmentation network is to establish an initial detection of lung nodules. During this stage, in order to obtain a high recall rate without introducing excessive false positive nodules, we propose a new sampling strategy for training. Simultaneously, a two-phase prediction method is also proposed in this stage. The second stage in the TSCNN architecture based on the proposed dual pooling structure is built into three 3D-CNN classification networks for false positive reduction. Since the network training requires a significant amount of training data, we designed a random mask as the data augmentation method in this study. Furthermore, we have improved the generalization ability of the false positive reduction model by means of ensemble learning. We verified the proposed architecture on the LUNA dataset in our experiments, which showed that the proposed TSCNN architecture did obtain competitive detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助每天100次采纳,获得20
1秒前
执着的风华完成签到,获得积分10
1秒前
风生完成签到,获得积分10
2秒前
晶晶完成签到,获得积分10
2秒前
鳗鱼雪莲完成签到,获得积分10
4秒前
5秒前
老迟到的书蝶完成签到,获得积分10
7秒前
鳗鱼雪莲发布了新的文献求助10
7秒前
8秒前
金枪鱼完成签到,获得积分10
8秒前
E1gb完成签到,获得积分10
9秒前
rrrrrrry发布了新的文献求助10
9秒前
夏雪儿完成签到,获得积分10
10秒前
11秒前
陈子宇完成签到 ,获得积分10
11秒前
yourenpkma123完成签到,获得积分20
11秒前
陈仙仙完成签到,获得积分10
12秒前
舒心的天完成签到,获得积分10
12秒前
希望天下0贩的0应助dll采纳,获得10
12秒前
12秒前
LDDD完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助拾伍采纳,获得10
13秒前
13秒前
14秒前
tdtk发布了新的文献求助10
15秒前
123完成签到,获得积分10
17秒前
17秒前
Roachw完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
geold完成签到,获得积分10
20秒前
曾经的贞完成签到,获得积分10
23秒前
FFFFFFG完成签到,获得积分10
23秒前
Hilda007完成签到,获得积分0
24秒前
胡帅发布了新的文献求助10
25秒前
今后应助乐正一兰采纳,获得10
25秒前
子寒完成签到,获得积分10
25秒前
从容安波完成签到 ,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535016
求助须知:如何正确求助?哪些是违规求助? 4622944
关于积分的说明 14584253
捐赠科研通 4563195
什么是DOI,文献DOI怎么找? 2500852
邀请新用户注册赠送积分活动 1480070
关于科研通互助平台的介绍 1451423