计算机科学
人工智能
卷积神经网络
联营
阶段(地层学)
模式识别(心理学)
分割
结核(地质)
深度学习
肺癌
假阳性率
全国肺筛查试验
还原(数学)
肺癌筛查
数学
病理
医学
古生物学
生物
几何学
作者
Haichao Cao,Hong Liu,Enmin Song,Guangzhi Ma,Renchao Jin,Xiangyang Xu,Tengying Liu,Chih‐Cheng Hung
标识
DOI:10.1109/jbhi.2019.2963720
摘要
Early detection of lung cancer is an effective way to improve the survival rate of patients. It is a critical step to have accurate detection of lung nodules in computed tomography (CT) images for the diagnosis of lung cancer. However, due to the heterogeneity of the lung nodules and the complexity of the surrounding environment, it is a challenge to develop a robust nodule detection method. In this study, we propose a two-stage convolutional neural networks (TSCNN) for lung nodule detection. The first stage based on the improved U-Net segmentation network is to establish an initial detection of lung nodules. During this stage, in order to obtain a high recall rate without introducing excessive false positive nodules, we propose a new sampling strategy for training. Simultaneously, a two-phase prediction method is also proposed in this stage. The second stage in the TSCNN architecture based on the proposed dual pooling structure is built into three 3D-CNN classification networks for false positive reduction. Since the network training requires a significant amount of training data, we designed a random mask as the data augmentation method in this study. Furthermore, we have improved the generalization ability of the false positive reduction model by means of ensemble learning. We verified the proposed architecture on the LUNA dataset in our experiments, which showed that the proposed TSCNN architecture did obtain competitive detection performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI