CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation

卷积神经网络 计算机科学 背景(考古学) 人工智能 分割 结核(地质) 深度学习 模式识别(心理学) 生物 古生物学
作者
Giuseppe Pezzano,Vicent Ribas Ripoll,Petia Radeva
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:198: 105792-105792 被引量:46
标识
DOI:10.1016/j.cmpb.2020.105792
摘要

Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of 3.3 % and 4.7 % , respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
kk发布了新的文献求助10
4秒前
Raymond完成签到,获得积分10
4秒前
zhuzhen007发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
波风水门发布了新的文献求助10
8秒前
9秒前
Nn发布了新的文献求助10
10秒前
11秒前
ddd777发布了新的文献求助10
11秒前
布同完成签到,获得积分10
13秒前
上官若男应助可靠巧荷采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
愫浅发布了新的文献求助10
16秒前
ddd777完成签到,获得积分10
16秒前
16秒前
刀客特幽发布了新的文献求助10
18秒前
19秒前
阳光发布了新的文献求助10
19秒前
刀客特幽发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774