Deep Learning for Ultrasound Localization Microscopy

显微镜 人工智能 计算机科学 超声波 超声成像 计算机视觉 物理 光学 放射科 医学
作者
Xin Liu,Tianyang Zhou,Mengyang Lu,Yi Yang,Qiong He,Jianwen Luo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (10): 3064-3078 被引量:91
标识
DOI:10.1109/tmi.2020.2986781
摘要

By localizing microbubbles (MBs) in the vasculature, ultrasound localization microscopy (ULM) has recently been proposed, which greatly improves the spatial resolution of ultrasound (US) imaging and will be helpful for clinical diagnosis. Nevertheless, several challenges remain in fast ULM imaging. The main problems are that current localization methods used to implement fast ULM imaging, e.g., a previously reported localization method based on sparse recovery (CS-ULM), suffer from long data-processing time and exhaustive parameter tuning (optimization). To address these problems, in this paper, we propose a ULM method based on deep learning, which is achieved by using a modified sub-pixel convolutional neural network (CNN), termed as mSPCN-ULM. Simulations and in vivo experiments are performed to evaluate the performance of mSPCN-ULM. Simulation results show that even if under high-density condition (6.4 MBs/mm 2 ), a high localization precision (~28 μm in the lateral direction and ~24 μm in the axial direction) and a high localization reliability (Jaccard index of 0.66) can be obtained by mSPCN-ULM, compared to CS-ULM. The in vivo experimental results indicate that with plane wave scan at a transmit center frequency of 15.625 MHz, microvessels with diameters of ~17 μm can be detected and adjacent microvessels with a distance of ~42 μm can be separated. Furthermore, when using GPU acceleration, the data-processing time of mSPCN-ULM can be shortened to ~6 sec/frame in the simulations and ~23 sec/frame in the in vivo experiments, which is 3-4 orders of magnitude faster than CS-ULM. Finally, once the network is trained, mSPCN-ULM does not need parameter tuning to implement ULM. As a result, mSPCN-ULM opens the door to implement ULM with fast data-processing speed, high imaging accuracy, short data-acquisition time, and high flexibility (robustness to parameters) characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助王道远采纳,获得30
3秒前
3秒前
7H4N发布了新的文献求助10
4秒前
木子发布了新的文献求助10
5秒前
闪闪的烁烁完成签到 ,获得积分10
5秒前
6秒前
7秒前
9秒前
10秒前
11秒前
jokeyoonic发布了新的文献求助10
13秒前
lyh发布了新的文献求助10
15秒前
木子完成签到,获得积分10
16秒前
17秒前
18秒前
狗大王完成签到,获得积分10
18秒前
wen完成签到,获得积分10
20秒前
没所谓完成签到,获得积分10
22秒前
mini发布了新的文献求助10
22秒前
23秒前
lyh完成签到,获得积分10
23秒前
24秒前
冰茉莉完成签到 ,获得积分10
26秒前
OutMan发布了新的文献求助10
27秒前
第一张完成签到,获得积分10
28秒前
31秒前
蓝岳洋发布了新的文献求助10
31秒前
cfjbxf完成签到,获得积分10
31秒前
yzy完成签到,获得积分20
33秒前
大模型应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
34秒前
852应助科研通管家采纳,获得10
34秒前
小虫学长应助科研通管家采纳,获得20
34秒前
科研通AI5应助科研通管家采纳,获得30
34秒前
完美世界应助科研通管家采纳,获得20
34秒前
所所应助科研通管家采纳,获得10
34秒前
小蘑菇应助科研通管家采纳,获得10
34秒前
七月发布了新的文献求助10
36秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752