Deep Learning for Ultrasound Localization Microscopy

显微镜 人工智能 计算机科学 超声波 超声成像 计算机视觉 物理 光学 放射科 医学
作者
Xin Liu,Tianyang Zhou,Mengyang Lu,Yi Yang,Qiong He,Jianwen Luo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (10): 3064-3078 被引量:117
标识
DOI:10.1109/tmi.2020.2986781
摘要

By localizing microbubbles (MBs) in the vasculature, ultrasound localization microscopy (ULM) has recently been proposed, which greatly improves the spatial resolution of ultrasound (US) imaging and will be helpful for clinical diagnosis. Nevertheless, several challenges remain in fast ULM imaging. The main problems are that current localization methods used to implement fast ULM imaging, e.g., a previously reported localization method based on sparse recovery (CS-ULM), suffer from long data-processing time and exhaustive parameter tuning (optimization). To address these problems, in this paper, we propose a ULM method based on deep learning, which is achieved by using a modified sub-pixel convolutional neural network (CNN), termed as mSPCN-ULM. Simulations and in vivo experiments are performed to evaluate the performance of mSPCN-ULM. Simulation results show that even if under high-density condition (6.4 MBs/mm2), a high localization precision ( [Formula: see text] in the lateral direction and [Formula: see text] in the axial direction) and a high localization reliability (Jaccard index of 0.66) can be obtained by mSPCN-ULM, compared to CS-ULM. The in vivo experimental results indicate that with plane wave scan at a transmit center frequency of 15.625 MHz, microvessels with diameters of [Formula: see text] can be detected and adjacent microvessels with a distance of [Formula: see text] can be separated. Furthermore, when using GPU acceleration, the data-processing time of mSPCN-ULM can be shortened to ~6 sec/frame in the simulations and ~23 sec/frame in the in vivo experiments, which is 3-4 orders of magnitude faster than CS-ULM. Finally, once the network is trained, mSPCN-ULM does not need parameter tuning to implement ULM. As a result, mSPCN-ULM opens the door to implement ULM with fast data-processing speed, high imaging accuracy, short data-acquisition time, and high flexibility (robustness to parameters) characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiao_Fu发布了新的文献求助10
刚刚
TTLOVEDXX完成签到,获得积分10
刚刚
魔幻向薇发布了新的文献求助30
1秒前
咎青文完成签到,获得积分10
1秒前
Wait完成签到,获得积分10
2秒前
yyy发布了新的文献求助10
2秒前
2秒前
202422040716发布了新的文献求助10
2秒前
N2H4完成签到,获得积分10
3秒前
随心发布了新的文献求助10
3秒前
乐正亦寒完成签到 ,获得积分10
4秒前
天天快乐应助brezze采纳,获得10
4秒前
panisa鹅完成签到,获得积分10
4秒前
我们围坐篝火完成签到,获得积分10
4秒前
5秒前
管逸含发布了新的文献求助10
5秒前
wanci应助欢喜的火龙果采纳,获得10
5秒前
Ye完成签到,获得积分10
5秒前
端庄秋蝶发布了新的文献求助10
6秒前
在水一方应助使徒猫采纳,获得10
6秒前
柳叶完成签到,获得积分10
6秒前
文静达完成签到,获得积分10
6秒前
7秒前
7秒前
imao完成签到,获得积分10
7秒前
xuxu完成签到,获得积分10
7秒前
舒适的映安完成签到,获得积分10
8秒前
8秒前
17完成签到 ,获得积分10
8秒前
ikun6666发布了新的文献求助10
8秒前
8秒前
lbh完成签到,获得积分10
8秒前
莫羽倾尘完成签到,获得积分10
9秒前
Jasper应助fangang采纳,获得30
9秒前
慎独完成签到,获得积分10
9秒前
思源应助李玉鹏采纳,获得10
9秒前
9秒前
AA发布了新的文献求助10
9秒前
dd完成签到,获得积分20
10秒前
Slence发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151003
求助须知:如何正确求助?哪些是违规求助? 4346822
关于积分的说明 13534586
捐赠科研通 4189537
什么是DOI,文献DOI怎么找? 2297538
邀请新用户注册赠送积分活动 1297888
关于科研通互助平台的介绍 1242494