Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost

阿达布思 Boosting(机器学习) 计算机科学 入侵检测系统 人工智能 机器学习 水准点(测量) 字错误率 假阳性率 模式识别(心理学) 分类器(UML) 大地测量学 地理
作者
Amin Shahraki,Mahmoud Abbasi,Øystein Haugen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:94: 103770-103770 被引量:123
标识
DOI:10.1016/j.engappai.2020.103770
摘要

Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
1秒前
打打应助help采纳,获得10
2秒前
项烙完成签到,获得积分10
2秒前
mia005应助搞怪白猫采纳,获得30
4秒前
明理的依柔完成签到,获得积分10
4秒前
1337003319发布了新的文献求助10
5秒前
天天快乐应助洞若观烟火采纳,获得10
9秒前
10秒前
10秒前
科目三应助小6s采纳,获得10
11秒前
Gakay发布了新的文献求助10
14秒前
16秒前
16秒前
dennisysz发布了新的文献求助10
17秒前
18秒前
kannakaco完成签到,获得积分10
19秒前
Priority完成签到,获得积分10
19秒前
111发布了新的文献求助10
20秒前
help发布了新的文献求助10
21秒前
小小莫发布了新的文献求助10
22秒前
風起天岚完成签到,获得积分10
23秒前
Gakay完成签到,获得积分10
23秒前
猫咪老师应助kannakaco采纳,获得30
24秒前
所所应助111采纳,获得10
28秒前
Fiona完成签到 ,获得积分10
28秒前
GS完成签到,获得积分10
29秒前
脑洞疼应助Ryan采纳,获得10
29秒前
LIUJIAWEI完成签到,获得积分10
30秒前
32秒前
Xieyusen完成签到,获得积分10
34秒前
丘比特应助连翘采纳,获得10
35秒前
xiaohanzai88完成签到,获得积分10
36秒前
上官若男应助呆萌的语芹采纳,获得50
40秒前
NexusExplorer应助Ryan采纳,获得10
41秒前
42秒前
GS发布了新的文献求助50
43秒前
坤坤发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103