Predicting Chronic Myocardial Ischemia Using CCTA-Based Radiomics Machine Learning Nomogram

列线图 医学 接收机工作特性 计算机辅助设计 狭窄 逻辑回归 放射科 冠状动脉疾病 无线电技术 心肌灌注成像 内科学 工程制图 工程类
作者
Zhenyu Shu,Sijia Cui,Yueqiao Zhang,Yuyun Xu,Shng-Che Hung,Liping Fu,Peipei Pang,Xiangyang Gong,Qinyang Jin
出处
期刊:Journal of Nuclear Cardiology [Springer Nature]
卷期号:29 (1): 262-274 被引量:43
标识
DOI:10.1007/s12350-020-02204-2
摘要

Coronary computed tomography angiography (CCTA) is a well-established non-invasive diagnostic test for the assessment of coronary artery diseases (CAD). CCTA not only provides information on luminal stenosis but also permits non-invasive assessment and quantitative measurement of stenosis based on radiomics.This study is aimed to develop and validate a CT-based radiomics machine learning for predicting chronic myocardial ischemia (MIS).CCTA and SPECT-myocardial perfusion imaging (MPI) of 154 patients with CAD were retrospectively analyzed and 94 patients were diagnosed with MIS. The patients were randomly divided into two sets: training (n = 107) and test (n = 47). Features were extracted for each CCTA cross-sectional image to identify myocardial segments. Multivariate logistic regression was used to establish a radiomics signature after feature dimension reduction. Finally, the radiomics nomogram was built based on a predictive model of MIS which in turn was constructed by machine learning combined with the clinically related factors. We then validated the model using data from 49 CAD patients and included 18 MIS patients from another medical center. The receiver operating characteristic curve evaluated the diagnostic accuracy of the nomogram based on the training set and was validated by the test and validation set. Decision curve analysis (DCA) was used to validate the clinical practicability of the nomogram.The accuracy of the nomogram for the prediction of MIS in the training, test and validation sets was 0.839, 0.832, and 0.816, respectively. The diagnosis accuracy of the nomogram, signature, and vascular stenosis were 0.824, 0.736 and 0.708, respectively. A significant difference in the number of patients with MIS between the high and low-risk groups was identified based on the nomogram (P < .05). The DCA curve demonstrated that the nomogram was clinically feasible.The radiomics nomogram constructed based on the image of CCTA act as a non-invasive tool for predicting MIS that helps to identify high-risk patients with coronary artery disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
西粤学完成签到,获得积分20
3秒前
无情的冰香完成签到 ,获得积分10
3秒前
miku完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
西粤学发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
FL完成签到 ,获得积分0
8秒前
大黄豆完成签到,获得积分10
8秒前
哥哥完成签到 ,获得积分10
9秒前
jgh完成签到 ,获得积分10
10秒前
nannan完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
guoxingliu完成签到,获得积分10
19秒前
20秒前
翁醉山完成签到 ,获得积分10
21秒前
spc68应助王京华采纳,获得10
23秒前
lixia完成签到 ,获得积分10
23秒前
FlyingAxe完成签到 ,获得积分10
23秒前
等待听安完成签到 ,获得积分10
25秒前
sdfdzhang完成签到 ,获得积分0
26秒前
drslytherin完成签到,获得积分10
26秒前
宋艳芳完成签到,获得积分10
27秒前
阿尔治完成签到,获得积分10
28秒前
悠悠完成签到 ,获得积分10
28秒前
30秒前
JamesPei应助历史真相采纳,获得10
32秒前
落叶无声完成签到 ,获得积分10
32秒前
默存完成签到,获得积分10
32秒前
洽洽瓜子shine完成签到,获得积分10
34秒前
留胡子的寄瑶完成签到,获得积分10
35秒前
无限的寄真完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
39秒前
39秒前
杪夏二八完成签到 ,获得积分10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688778
求助须知:如何正确求助?哪些是违规求助? 5069283
关于积分的说明 15194300
捐赠科研通 4846767
什么是DOI,文献DOI怎么找? 2599174
邀请新用户注册赠送积分活动 1551195
关于科研通互助平台的介绍 1509948