Predicting Chronic Myocardial Ischemia Using CCTA-Based Radiomics Machine Learning Nomogram

列线图 医学 接收机工作特性 计算机辅助设计 狭窄 逻辑回归 放射科 冠状动脉疾病 无线电技术 心肌灌注成像 内科学 工程类 工程制图
作者
Zhenyu Shu,Sijia Cui,Yueqiao Zhang,Yuyun Xu,Shng-Che Hung,Liping Fu,Peipei Pang,Xiangyang Gong,Qinyang Jin
出处
期刊:Journal of Nuclear Cardiology [Springer Science+Business Media]
卷期号:29 (1): 262-274 被引量:31
标识
DOI:10.1007/s12350-020-02204-2
摘要

Coronary computed tomography angiography (CCTA) is a well-established non-invasive diagnostic test for the assessment of coronary artery diseases (CAD). CCTA not only provides information on luminal stenosis but also permits non-invasive assessment and quantitative measurement of stenosis based on radiomics.This study is aimed to develop and validate a CT-based radiomics machine learning for predicting chronic myocardial ischemia (MIS).CCTA and SPECT-myocardial perfusion imaging (MPI) of 154 patients with CAD were retrospectively analyzed and 94 patients were diagnosed with MIS. The patients were randomly divided into two sets: training (n = 107) and test (n = 47). Features were extracted for each CCTA cross-sectional image to identify myocardial segments. Multivariate logistic regression was used to establish a radiomics signature after feature dimension reduction. Finally, the radiomics nomogram was built based on a predictive model of MIS which in turn was constructed by machine learning combined with the clinically related factors. We then validated the model using data from 49 CAD patients and included 18 MIS patients from another medical center. The receiver operating characteristic curve evaluated the diagnostic accuracy of the nomogram based on the training set and was validated by the test and validation set. Decision curve analysis (DCA) was used to validate the clinical practicability of the nomogram.The accuracy of the nomogram for the prediction of MIS in the training, test and validation sets was 0.839, 0.832, and 0.816, respectively. The diagnosis accuracy of the nomogram, signature, and vascular stenosis were 0.824, 0.736 and 0.708, respectively. A significant difference in the number of patients with MIS between the high and low-risk groups was identified based on the nomogram (P < .05). The DCA curve demonstrated that the nomogram was clinically feasible.The radiomics nomogram constructed based on the image of CCTA act as a non-invasive tool for predicting MIS that helps to identify high-risk patients with coronary artery disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanhe完成签到,获得积分10
4秒前
可爱的函函应助青栞采纳,获得10
6秒前
斯文败类应助yao采纳,获得10
6秒前
可靠的冰烟完成签到,获得积分10
6秒前
ufofly730完成签到 ,获得积分10
12秒前
上官若男应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
21秒前
23秒前
23秒前
打打应助断章采纳,获得10
24秒前
Wei完成签到 ,获得积分10
26秒前
Fancy发布了新的文献求助30
26秒前
27秒前
29秒前
完美世界应助Ss采纳,获得10
32秒前
杆杆发布了新的文献求助10
33秒前
王运静发布了新的文献求助10
34秒前
刘刘刘monkey完成签到,获得积分20
34秒前
chiyu完成签到,获得积分10
35秒前
缥缈书本完成签到 ,获得积分10
36秒前
37秒前
科研通AI5应助杆杆采纳,获得10
42秒前
断章发布了新的文献求助10
42秒前
duoduo完成签到,获得积分10
44秒前
研友_ZGDVz8完成签到,获得积分10
51秒前
CipherSage应助maxin采纳,获得10
55秒前
1分钟前
黑白完成签到,获得积分10
1分钟前
皮卡丘发布了新的文献求助10
1分钟前
星辰大海应助cai采纳,获得10
1分钟前
科研通AI5应助刘小明采纳,获得10
1分钟前
研友_RLNzvL发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315