Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology

高光谱成像 遥感 偏最小二乘回归 环境科学 比例(比率) 植被(病理学) 图像分辨率 计算机科学 人工智能 地图学 地理 医学 病理 机器学习
作者
Anting Guo,Wenjiang Huang,Yingying Dong,Huichun Ye,Huiqin Ma,Bo Liu,Wenbin Wu,Yu Ren,Chao Ruan,Yun Geng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (1): 123-123 被引量:139
标识
DOI:10.3390/rs13010123
摘要

Yellow rust is a worldwide disease that poses a serious threat to the safety of wheat production. Numerous studies on near-surface hyperspectral remote sensing at the leaf scale have achieved good results for disease monitoring. The next step is to monitor the disease at the field scale, which is of great significance for disease control. In our study, an unmanned aerial vehicle (UAV) equipped with a hyperspectral sensor was used to obtain hyperspectral images at the field scale. Vegetation indices (VIs) and texture features (TFs) extracted from the UAV-based hyperspectral images and their combination were used to establish partial least-squares regression (PLSR)-based disease monitoring models in different infection periods. In addition, we resampled the original images with 1.2 cm spatial resolution to images with different spatial resolutions (3 cm, 5 cm, 7 cm, 10 cm, 15 cm, and 20 cm) to evaluate the effect of spatial resolution on disease monitoring accuracy. The findings showed that the VI-based model had the highest monitoring accuracy (R2 = 0.75) in the mid-infection period. The TF-based model could be used to monitor yellow rust at the field scale and obtained the highest R2 in the mid- and late-infection periods (0.65 and 0.82, respectively). The VI-TF-based models had the highest accuracy in each infection period and outperformed the VI-based or TF-based models. The spatial resolution had a negligible influence on the VI-based monitoring accuracy, but significantly influenced the TF-based monitoring accuracy. Furthermore, the optimal spatial resolution for monitoring yellow rust using the VI-TF-based model in each infection period was 10 cm. The findings provide a reference for accurate disease monitoring using UAV hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨YY完成签到,获得积分10
1秒前
避橙完成签到,获得积分10
2秒前
2秒前
化身孤岛的鲸完成签到,获得积分10
3秒前
ly完成签到,获得积分10
3秒前
4秒前
想跟这个世界讲个道理完成签到,获得积分10
5秒前
5秒前
pxh完成签到,获得积分10
5秒前
澜斐完成签到,获得积分10
6秒前
7秒前
墨白白完成签到,获得积分10
7秒前
momeak完成签到,获得积分10
8秒前
春衫发布了新的文献求助10
9秒前
归亦完成签到,获得积分10
9秒前
宛小叶发布了新的文献求助10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
积极向上完成签到,获得积分10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
末世寻光完成签到,获得积分20
10秒前
海洋发布了新的文献求助10
10秒前
11秒前
11秒前
摇晃的红酒杯应助春衫采纳,获得50
12秒前
科研通AI5应助重要的涵菱采纳,获得10
13秒前
taozhiqi发布了新的文献求助10
14秒前
Yin完成签到,获得积分10
15秒前
15秒前
末世寻光发布了新的文献求助10
16秒前
16秒前
善学以致用应助栗子采纳,获得10
18秒前
脆脆鲨发布了新的文献求助10
18秒前
小常发布了新的文献求助10
19秒前
王卫完成签到,获得积分10
19秒前
所所应助小笼包采纳,获得10
19秒前
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517