Evaluating ATC-ICD: Assessing the relationship between selected medication and diseases with machine learning

医学诊断 药方 医学 机器学习 人工智能 痛风 疾病 匹配(统计) 诊断代码 糖尿病 计算机科学 公共卫生 梅德林 数据挖掘 代表(政治) 家庭医学 Lasso(编程语言) 病假 替代医学 门诊护理 支持向量机
作者
Nadine Weibrecht,Florian Endel,Melanie Zechmeister
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:4 (3)
标识
DOI:10.23889/ijpds.v4i3.1292
摘要

IntroductionCoded diagnoses (ICD-9, ICD-10) are only available in routine data of the Austrian Health-Care system in connection with sick leave or inpatient hospital stays. Therefore, they only cover a small part of the population. Coded diagnoses from the outpatient sector are not documented. The aim of the project is to estimate diagnoses based on filled prescriptions reimbursed by a public health insurance institution. The result is a model that can provide probable diagnoses (ICD-10 coding) based on individual medication (ATC coding). MethodsBeginning in 2008 / 2009, the project ATC->ICD-9 has been developed by means of a statistical procedure. Here, hospital and sick leave diagnoses, as well as data on received medication are used to determine assignment probabilities. In this project, we developed a new method to derive diagnoses from medications. Our method is based on the word2vec-algorithm: Patient histories are used as input phrases, so that low-dimensional embeddings of medications and diseases are learned. In the learned vector space, similar medications and diseases are close to each other. ResultsTo evaluate our model, we compute the vector representation for medications and look for nearby diseases. E.g., the closest diseases to typical diabetes medication are different kinds of diabetes and retina affections, while nearby gout medications, gout and kidney diseases are found. ConclusionFor the given examples, our model provides reasonable results. It does not only yield typical diseases to a medication, but also common secondary symptoms. This motivates to apply the model on further use cases. For example, given an anonymized list of patients, containing their medications, disease distributions of these patients can be computed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈书本完成签到 ,获得积分10
1秒前
wsqg123完成签到,获得积分10
2秒前
tzk完成签到,获得积分10
2秒前
欣欣完成签到 ,获得积分10
2秒前
星如繁花完成签到,获得积分10
4秒前
biozy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
给我打只山鹰吧完成签到,获得积分10
8秒前
像只猫完成签到,获得积分10
8秒前
凌泉完成签到 ,获得积分10
8秒前
灵巧胜完成签到 ,获得积分10
9秒前
xml完成签到,获得积分20
9秒前
杂菜流完成签到,获得积分10
9秒前
lixia完成签到 ,获得积分10
12秒前
14秒前
benbengouj完成签到,获得积分10
14秒前
大江流完成签到,获得积分10
14秒前
受昂夫发布了新的文献求助10
14秒前
14秒前
JCSY完成签到 ,获得积分10
16秒前
111完成签到,获得积分10
17秒前
小可完成签到,获得积分10
17秒前
麦芽糖完成签到,获得积分10
18秒前
DayLight完成签到,获得积分10
18秒前
elang完成签到,获得积分10
19秒前
清脆半双发布了新的文献求助20
19秒前
啊啊发布了新的文献求助10
20秒前
wanghuiyanyx完成签到,获得积分10
20秒前
梦凡完成签到,获得积分10
20秒前
Cai完成签到,获得积分10
20秒前
Oasis发布了新的文献求助10
20秒前
花阳完成签到 ,获得积分10
22秒前
0109完成签到,获得积分10
23秒前
23秒前
batmanrobin发布了新的文献求助10
25秒前
茗苓完成签到,获得积分10
26秒前
orixero应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715692
求助须知:如何正确求助?哪些是违规求助? 5236513
关于积分的说明 15274839
捐赠科研通 4866396
什么是DOI,文献DOI怎么找? 2612984
邀请新用户注册赠送积分活动 1563107
关于科研通互助平台的介绍 1520618