Uncertainty-Based Multidisciplinary Design Optimization for Feedback-Coupled Systems Under Both Parametric and Metamodeling Uncertainties

一致性(知识库) 计算机科学 元建模 过程(计算) 数学优化 多学科设计优化 参数统计 工程设计过程 克里金 多学科方法 数学 工程类 机器学习 人工智能 机械工程 社会科学 统计 操作系统 社会学 程序设计语言
作者
Zhao Liu,Zhouzhou Song,Ping Zhu,Can Xu
出处
期刊:Design Automation Conference 被引量:1
标识
DOI:10.1115/detc2020-22161
摘要

Abstract Uncertainty-based multidisciplinary design optimization (UMDO) is an effective methodology to deal with uncertainties in the engineering system design. In order to shorten the design cycle and improve the design efficiency, the time-consuming computer simulation models are often replaced by metamodels, which consequently introduces metamodeling uncertainty into the UMDO procedure. The optimal solutions may deviate from the true results or even become infeasible if the metamodeling uncertainty is neglected. However, it is difficult to quantify and propagate the metamodeling uncertainty, especially in the UMDO process with feedback-coupled systems since the interdisciplinary consistency needs to be satisfied. In this paper, a new approach is proposed to solve the UMDO problem for the feedback-coupled systems under both parametric and metamodeling uncertainties. This approach adopts the decoupled formulation and it applies the Kriging technique to quantify the metamodeling uncertainty. The polynomial chaos expansion (PCE) technique is applied to propagate the two types of uncertainties and represent the interdisciplinary consistency constraints. In the optimization approach, the proposed method uses the iterative construction of PCE models for response means and variances to satisfy the multidisciplinary consistency at the optimal solution. The proposed approach is verified by a mathematical example and applied to the fire satellite design. The results demonstrate the proposed approach can solve the UMDO problem for coupled systems accurately and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
还单身的雅琴完成签到,获得积分10
刚刚
1秒前
abocide完成签到,获得积分10
1秒前
李爱国应助北海采纳,获得10
1秒前
1秒前
dew应助Hedione采纳,获得10
1秒前
CKY完成签到,获得积分10
2秒前
大大发布了新的文献求助10
2秒前
allezallez完成签到,获得积分10
2秒前
Ava应助黄-Sir采纳,获得10
2秒前
3秒前
懒得理完成签到 ,获得积分10
3秒前
baixue发布了新的文献求助150
3秒前
赵海锋完成签到,获得积分20
3秒前
文文发布了新的文献求助10
3秒前
善学以致用应助二三采纳,获得10
4秒前
镜花水月完成签到,获得积分10
4秒前
刘小孩发布了新的文献求助10
4秒前
5秒前
JamesPei应助YUKI采纳,获得10
5秒前
5秒前
lant0932完成签到,获得积分10
5秒前
6秒前
果咪完成签到 ,获得积分10
6秒前
海棠花发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Akim应助zmm采纳,获得30
7秒前
8秒前
8秒前
晓军完成签到,获得积分10
8秒前
南兮发布了新的文献求助10
9秒前
xxx完成签到,获得积分10
9秒前
9秒前
在水一方应助小郭求学采纳,获得10
10秒前
害羞岂愈关注了科研通微信公众号
10秒前
时尚的哈密瓜完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347