REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs

青光眼 计算机科学 眼底(子宫) 人工智能 基本事实 眼底摄影 分割 水准点(测量) 集合(抽象数据类型) 视盘 验光服务 计算机视觉 医学 眼科 视网膜 地图学 地理 荧光血管造影 程序设计语言
作者
José Ignacio Orlando,Huazhu Fu,João Barbosa‐Breda,Karel Van Keer,Deepti R. Bathula,Andres Diaz‐Pinto,Ruogu Fang,Pheng‐Ann Heng,Je-Young Kim,JoonHo Lee,Joonseok Lee,Xiaoxiao Li,Peng Liu,Shuai Lu,Balamurali Murugesan,Valery Naranjo,Sai Samarth R Phaye,Sharath M Shankaranarayana,Apoorva Sikka,Jaemin Son
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:59: 101570-101570 被引量:597
标识
DOI:10.1016/j.media.2019.101570
摘要

Glaucoma is one of the leading causes of irreversible but preventable blindness in working age populations. Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders. However, its application to glaucoma has been limited to the computation of a few related biomarkers such as the vertical cup-to-disc ratio. Deep learning approaches, although widely applied for medical image analysis, have not been extensively used for glaucoma assessment due to the limited size of the available data sets. Furthermore, the lack of a standardize benchmark strategy makes difficult to compare existing methods in a uniform way. In order to overcome these issues we set up the Retinal Fundus Glaucoma Challenge, REFUGE (https://refuge.grand-challenge.org), held in conjunction with MICCAI 2018. The challenge consisted of two primary tasks, namely optic disc/cup segmentation and glaucoma classification. As part of REFUGE, we have publicly released a data set of 1200 fundus images with ground truth segmentations and clinical glaucoma labels, currently the largest existing one. We have also built an evaluation framework to ease and ensure fairness in the comparison of different models, encouraging the development of novel techniques in the field. 12 teams qualified and participated in the online challenge. This paper summarizes their methods and analyzes their corresponding results. In particular, we observed that two of the top-ranked teams outperformed two human experts in the glaucoma classification task. Furthermore, the segmentation results were in general consistent with the ground truth annotations, with complementary outcomes that can be further exploited by ensembling the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的赛凤完成签到,获得积分10
刚刚
ygg应助MSYMC采纳,获得10
刚刚
刚刚
97完成签到 ,获得积分10
1秒前
2秒前
2秒前
zhiqing发布了新的文献求助10
2秒前
hanleiharry1发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助10
4秒前
小浣熊完成签到,获得积分20
5秒前
科研天才完成签到,获得积分10
6秒前
乐乐应助缺粥采纳,获得10
6秒前
6秒前
在不在发布了新的文献求助30
6秒前
7秒前
YingLi完成签到,获得积分10
7秒前
8秒前
zhiqing完成签到 ,获得积分10
9秒前
9秒前
cd完成签到,获得积分10
10秒前
Setsail24k完成签到,获得积分10
10秒前
科研通AI2S应助Edward采纳,获得10
10秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
万能图书馆应助可爱背包采纳,获得10
11秒前
农夫完成签到,获得积分0
13秒前
zzqzzqzzq发布了新的文献求助20
14秒前
14秒前
lisiwen818完成签到 ,获得积分10
15秒前
15秒前
15秒前
19秒前
19秒前
20秒前
20秒前
Hello应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065993
求助须知:如何正确求助?哪些是违规求助? 3604665
关于积分的说明 11448100
捐赠科研通 3327058
什么是DOI,文献DOI怎么找? 1829019
邀请新用户注册赠送积分活动 899099
科研通“疑难数据库(出版商)”最低求助积分说明 819437