亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic classification of informative laryngoscopic images using deep learning

人工智能 计算机科学 分类器(UML) 模式识别(心理学) 试验装置 卷积神经网络 超参数 精确性和召回率 学习迁移 F1得分
作者
Peter Yao,Dan Witte,Hortense Gimonet,Alexander German,Katerina Andreadis,Monica Cheng,Lucian Sulica,Olivier Elemento,J. Wesley Barnes,Anaïs Rameau
出处
期刊:Laryngoscope investigative otolaryngology [Wiley]
卷期号:7 (2): 460-466 被引量:16
标识
DOI:10.1002/lio2.754
摘要

Abstract Objective This study aims to develop and validate a convolutional neural network (CNN)‐based algorithm for automatic selection of informative frames in flexible laryngoscopic videos. The classifier has the potential to aid in the development of computer‐aided diagnosis systems and reduce data processing time for clinician‐computer scientist teams. Methods A dataset of 22,132 laryngoscopic frames was extracted from 137 flexible laryngostroboscopic videos from 115 patients. 55 videos were from healthy patients with no laryngeal pathology and 82 videos were from patients with vocal fold polyps. The extracted frames were manually labeled as informative or uninformative by two independent reviewers based on vocal fold visibility, lighting, focus, and camera distance, resulting in 18,114 informative frames and 4018 uninformative frames. The dataset was split into training and test sets. A pre‐trained ResNet‐18 model was trained using transfer learning to classify frames as informative or uninformative. Hyperparameters were set using cross‐validation. The primary outcome was precision for the informative class and secondary outcomes were precision, recall, and F1‐score for all classes. The processing rate for frames between the model and a human annotator were compared. Results The automated classifier achieved an informative frame precision, recall, and F1‐score of 94.4%, 90.2%, and 92.3%, respectively, when evaluated on a hold‐out test set of 4438 frames. The model processed frames 16 times faster than a human annotator. Conclusion The CNN‐based classifier demonstrates high precision for classifying informative frames in flexible laryngostroboscopic videos. This model has the potential to aid researchers with dataset creation for computer‐aided diagnosis systems by automatically extracting relevant frames from laryngoscopic videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG完成签到,获得积分0
14秒前
38秒前
44秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
bobby仔完成签到,获得积分10
1分钟前
Timelapse应助jjx1005采纳,获得50
1分钟前
bobby仔发布了新的文献求助10
1分钟前
共享精神应助bobby仔采纳,获得10
2分钟前
慕青应助sweet1采纳,获得10
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
karstbing发布了新的文献求助10
2分钟前
2分钟前
寒冷的初彤完成签到,获得积分20
2分钟前
徐sir发布了新的文献求助10
3分钟前
andrewyu完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
huenguyenvan发布了新的文献求助10
3分钟前
lovewlp完成签到 ,获得积分10
4分钟前
DoLaso完成签到 ,获得积分10
4分钟前
4分钟前
zpli完成签到 ,获得积分10
4分钟前
4分钟前
彭彦舟发布了新的文献求助10
4分钟前
sweet1关注了科研通微信公众号
4分钟前
5分钟前
5分钟前
chen完成签到 ,获得积分10
5分钟前
彭彦舟发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714892
求助须知:如何正确求助?哪些是违规求助? 5227992
关于积分的说明 15273799
捐赠科研通 4866059
什么是DOI,文献DOI怎么找? 2612635
邀请新用户注册赠送积分活动 1562805
关于科研通互助平台的介绍 1520091