Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism

水准点(测量) 随机性 能量(信号处理) 期限(时间) 计算机科学 任务(项目管理) 人工智能 数学优化 模拟 工程类 数学 统计 物理 量子力学 系统工程 地理 大地测量学
作者
Dongxiao Niu,Min Yu,Lijie Sun,Tian Gao,Keke Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118801-118801 被引量:186
标识
DOI:10.1016/j.apenergy.2022.118801
摘要

Accurate short-term multi-energy load forecasting is an essential prerequisite for ensuring the reliable and economic operation of integrated energy systems (IES). Considering the large fluctuations, strong randomness, and the multi-energy coupling relationship of regional IES, this paper proposes a novel short-term multi-energy load forecasting method based on a CNN-BiGRU model that is optimized by attention mechanism. First, the dynamic coupling relationship between multi-energy loads is qualitatively analyzed, and the influencing factors of multi-energ loads are screened based on data-driven analysis. Second, a one-dimensional CNN layer is formulated to extract complex high-dimensional features, and BiGRU is constructed to extract the time dependence from historical sequences. In particular, three attention mechanism modules are introduced to the BiGRU hidden state through the mapping weight and learning parameter matrix to enhance the impact of key information. Then, hard weight sharing is adopted to extract the inherent multi-energy coupling relationship. Finally, a novel multi-task loss function weight optimization method is applied to search for the optimal multi-task weight, which is used to balance multi-task learning (MTL) to achieve the optimization of the overall forecasting model. To validate the effectiveness of the CNN-BiGRU-Attention MTL model with loss function optimization, this paper compares the proposed model with five benchmark models by MAPE, RMSE, MAE, R2, and computational time. Compared with the traditional LSTM model, the cooling, heat, and electrical load forecasting accuracy (measured by MAPE) of the proposed hybrid model increased by 61.86%, 73.03%, and 63.39%, respectively, which demonstrates that the proposed model exhibits superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得20
刚刚
栗子味的茶完成签到 ,获得积分10
1秒前
周小鱼发布了新的文献求助10
1秒前
1秒前
占万声完成签到,获得积分10
2秒前
刘锦涛完成签到,获得积分10
4秒前
恰同学少年完成签到,获得积分10
10秒前
王鑫完成签到 ,获得积分10
14秒前
Yara.H完成签到 ,获得积分10
14秒前
姚老表完成签到,获得积分10
14秒前
15秒前
傻瓜完成签到 ,获得积分10
17秒前
ezreal完成签到,获得积分10
18秒前
天天发布了新的文献求助10
20秒前
20秒前
FCH2023完成签到,获得积分10
22秒前
diudiu完成签到,获得积分10
22秒前
雪花君完成签到,获得积分10
22秒前
任性的岱周完成签到,获得积分10
24秒前
24秒前
FOCUS完成签到 ,获得积分10
25秒前
chase发布了新的文献求助10
25秒前
lvshiwen完成签到,获得积分10
26秒前
XTQ完成签到,获得积分10
27秒前
ru完成签到 ,获得积分10
28秒前
28秒前
li发布了新的文献求助10
28秒前
Freud完成签到,获得积分10
30秒前
30秒前
无心的起眸完成签到 ,获得积分10
33秒前
云烟成雨完成签到,获得积分10
34秒前
laihama完成签到,获得积分10
34秒前
儒雅的焦完成签到,获得积分10
34秒前
乙醇完成签到 ,获得积分10
34秒前
Freud发布了新的文献求助10
35秒前
li完成签到,获得积分10
36秒前
王hf完成签到,获得积分20
36秒前
37秒前
没头脑和不高兴完成签到 ,获得积分10
38秒前
杨志坚完成签到 ,获得积分10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346708
关于积分的说明 10329984
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726