Learning biophysical determinants of cell fate with deep neural networks

计算机科学 人工智能 人工神经网络 神经科学 生物
作者
Christopher J. Soelistyo,Giulia Vallardi,Guillaume Charras,Alan R. Lowe
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (7): 636-644 被引量:41
标识
DOI:10.1038/s42256-022-00503-6
摘要

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning approach capable of learning an explainable model of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue, during which cell fate is thought to be determined by the local cellular neighbourhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE’s latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate—a conclusion that is in agreement with our current understanding from over a decade of scientific research. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network, which using the predictions of the τ-VAE can identify conditions that deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening. An end-to-end machine learning approach that can learn which mechanisms determine cell fate and competition from a large time-lapse microscopy dataset is developed. The approach makes use of a probabilistic autoencoder to learn an interpretable representation of the organization of cells, and provides cell fate predictions that can be tested in drug screening experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醋溜爆肚儿完成签到,获得积分10
1秒前
David发布了新的文献求助10
1秒前
1秒前
asdfqwer完成签到,获得积分0
1秒前
2秒前
2秒前
满天完成签到,获得积分10
3秒前
霸气雯完成签到,获得积分10
3秒前
ChiariRay发布了新的文献求助10
3秒前
神内小天使完成签到,获得积分10
4秒前
韭菜盒子发布了新的文献求助10
5秒前
田超完成签到,获得积分10
5秒前
周老师完成签到 ,获得积分10
5秒前
充电宝应助背后的大米采纳,获得10
5秒前
Zora发布了新的文献求助10
5秒前
6秒前
hhgcc完成签到,获得积分10
6秒前
6秒前
林晚停完成签到,获得积分10
6秒前
6秒前
zorro3574发布了新的文献求助10
7秒前
wanci应助Mia采纳,获得10
8秒前
8秒前
向雨竹完成签到,获得积分10
8秒前
XiaoMaomi完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
sx发布了新的文献求助10
9秒前
tonight发布了新的文献求助10
10秒前
BowieHuang应助David采纳,获得10
10秒前
顺利毕业耶耶耶完成签到,获得积分10
11秒前
11秒前
独特纸飞机完成签到 ,获得积分10
11秒前
十个勤天完成签到,获得积分10
11秒前
张瑜发布了新的文献求助30
11秒前
牧绯完成签到,获得积分10
11秒前
小冉不熬夜完成签到 ,获得积分10
12秒前
stephenzh完成签到,获得积分10
12秒前
12秒前
world完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685844
关于积分的说明 14840076
捐赠科研通 4675267
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471141