Novel Combined Enzymatic Approach to Analyze Nonsialylated N-Linked Glycans through MALDI Imaging Mass Spectrometry

内糖苷酶 聚糖 岩藻糖基化 唾液酸酶 N-糖酰胺酶F 生物化学 化学 糖基化 糖蛋白 糖组学 劈开 唾液酸 内糖苷酶H 岩藻糖 神经氨酸酶 细胞 高尔基体
作者
Andrew DelaCourt,Hongyan Liang,Richard R. Drake,Peggi M. Angel,Anand Mehta
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:21 (8): 1930-1938 被引量:8
标识
DOI:10.1021/acs.jproteome.2c00193
摘要

Alterations to N-glycan expression are relevant to the progression of various diseases, particularly cancer. In many cases, specific N-glycan structural features such as sialylation, fucosylation, and branching are of specific interest. A novel MALDI imaging mass spectrometry workflow has been recently developed to analyze these features of N-glycosylation through the utilization of endoglycosidase enzymes to cleave N-glycans from associated glycoproteins. Enzymes that have previously been utilized to cleave N-glycans include peptide-N-glycosidase F (PNGase F) to target N-glycans indiscriminately and endoglycosidase F3 (Endo F3) to target core fucosylated N-glycans. In addition to these endoglycosidases, additional N-glycan cleaving enzymes could be used to target specific structural features. Sialidases, also termed neuraminidases, are a family of enzymes that remove terminal sialic acids from glycoconjugates. This work aims to utilize sialidase, in conjunction with PNGase F/Endo F3, to enzymatically remove sialic acids from N-glycans in an effort to increase sensitivity for nonsialylated N-glycan MALDI-IMS peaks. Improving detection of nonsialylated N-glycans allows for a more thorough analysis of specific structural features such as fucosylation or branching, particularly of low abundant structures. Sialidase utilization in MALDI-IMS dramatically increases sensitivity and increases on-tissue endoglycosidase efficiency, making it a very useful companion technique to specifically detect nonsialylated N-glycans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不才完成签到,获得积分10
2秒前
3秒前
能干的谷蕊完成签到 ,获得积分10
3秒前
slby完成签到,获得积分20
4秒前
火山发布了新的文献求助10
4秒前
爆米花应助研友_851KE8采纳,获得10
4秒前
zsl完成签到 ,获得积分10
4秒前
wsf完成签到,获得积分10
5秒前
LY发布了新的文献求助10
5秒前
6秒前
岑梨愁发布了新的文献求助10
6秒前
6秒前
双楠发布了新的文献求助10
6秒前
7秒前
chen完成签到,获得积分10
7秒前
raemourn发布了新的文献求助50
8秒前
所所应助Niu采纳,获得10
8秒前
汉堡包应助韦雨君采纳,获得100
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得30
9秒前
许甜甜鸭应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
puzhongjiMiQ发布了新的文献求助10
10秒前
慕青应助YXChen采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Plasticity Theory for Soil Stress-Strain Behavior 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835233
求助须知:如何正确求助?哪些是违规求助? 3377688
关于积分的说明 10499920
捐赠科研通 3097264
什么是DOI,文献DOI怎么找? 1705630
邀请新用户注册赠送积分活动 820643
科研通“疑难数据库(出版商)”最低求助积分说明 772164