Artificial intelligence for diagnosing microvessels of precancerous lesions and superficial esophageal squamous cell carcinomas: a multicenter study

医学 食管鳞状细胞癌 基底细胞 放射科 病理
作者
Xianglei Yuan,Wei Liu,Yan Liu,Xianhui Zeng,Yi Mou,Chuncheng Wu,Liansong Ye,Yuhang Zhang,Libang He,Jing Feng,Wanhong Zhang,Jun Wang,Xin Chen,Yong Hu,Kaihua Zhang,Bing Hu
出处
期刊:Surgical Endoscopy and Other Interventional Techniques [Springer Science+Business Media]
卷期号:36 (11): 8651-8662 被引量:9
标识
DOI:10.1007/s00464-022-09353-0
摘要

Intrapapillary capillary loop (IPCL) is an important factor for predicting invasion depth of esophageal squamous cell carcinoma (ESCC). The invasion depth is closely related to the selection of treatment strategy. However, diagnosis of IPCLs is complicated and subject to interobserver variability. This study aimed to develop an artificial intelligence (AI) system to predict IPCLs subtypes of precancerous lesions and superficial ESCC.Images of magnifying endoscopy with narrow band imaging from three hospitals were collected retrospectively. IPCLs subtypes were annotated on images by expert endoscopists according to Japanese Endoscopic Society classification. The performance of the AI system was evaluated using internal and external validation datasets (IVD and EVD) and compared with that of the 11 endoscopists.A total of 7094 images from 685 patients were used to train and validate the AI system. The combined accuracy of the AI system for diagnosing IPCLs subtypes in IVD and EVD was 91.3% and 89.8%, respectively. The AI system achieved better performance than endoscopists in predicting IPCLs subtypes and invasion depth. The ability of junior endoscopists to diagnose IPCLs subtypes (combined accuracy: 84.7% vs 78.2%, P < 0.0001) and invasion depth (combined accuracy: 74.4% vs 67.9%, P < 0.0001) were significantly improved with AI system assistance. Although there was no significant differences, the performance of senior endoscopists was slightly elevated.The proposed AI system could improve the diagnostic ability of endoscopists to predict IPCLs classification of precancerous lesions and superficial ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊笨笨完成签到,获得积分10
1秒前
1秒前
小蘑菇应助cometx采纳,获得50
4秒前
852应助平常的不评采纳,获得10
5秒前
深情安青应助小白采纳,获得10
6秒前
华仔应助DFX采纳,获得10
6秒前
7秒前
MOMO完成签到,获得积分10
9秒前
开放友灵完成签到,获得积分10
11秒前
无私迎海完成签到,获得积分10
11秒前
Henry完成签到,获得积分10
11秒前
13秒前
13秒前
Lindsay应助小小小珂卿采纳,获得10
15秒前
DFX完成签到,获得积分10
15秒前
月绛完成签到,获得积分10
16秒前
研友_LpvQlZ完成签到,获得积分10
16秒前
18秒前
落寞的妖妖完成签到,获得积分10
18秒前
小白发布了新的文献求助10
19秒前
DFX发布了新的文献求助10
19秒前
英姑应助濠哥妈咪采纳,获得10
20秒前
hhhhmmmn完成签到,获得积分10
20秒前
开放友灵发布了新的文献求助10
21秒前
hitachi完成签到 ,获得积分10
22秒前
manan发布了新的文献求助10
23秒前
26秒前
CipherSage应助酚酞v采纳,获得10
27秒前
酷小裤完成签到,获得积分10
27秒前
28秒前
28秒前
31秒前
chuhong完成签到 ,获得积分10
31秒前
tt发布了新的文献求助10
33秒前
ramsey33完成签到 ,获得积分10
33秒前
angrymax发布了新的文献求助10
33秒前
34秒前
34秒前
濠哥妈咪发布了新的文献求助10
35秒前
爱文字发布了新的文献求助20
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732