Auditing Construction Cost from an In-Process Perspective Based on a Bayesian Predictive Model

审计 计算机科学 过程(计算) 贝叶斯网络 机制(生物学) 成本超支 鉴定(生物学) 成本估算 贝叶斯概率 风险分析(工程) 运筹学 人工智能 建筑业 工程类 系统工程 会计 业务 建筑工程 操作系统 哲学 认识论 生物 植物
作者
Peipei Wang,Kun Wang,Yunhan Huang,Peter Fenn,Ian Stewart
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:148 (4) 被引量:11
标识
DOI:10.1061/(asce)co.1943-7862.0002253
摘要

The traditional audit process in construction cost control usually occurs passively at the end of a project life cycle. This calls for a predictive model that provides a framework assembling essential information and predicts construction cost overrun potential during project processes. Unlike previous mechanistic models that reflect the full formation mechanism, the model established in this paper features a fragmentary formation mechanism consisting of shortlisted critical factors. Factors were shortlisted by both theoretical and statistical criticality to construction cost overrun, dictating the factors to pass the initial literature review identification, expert opinion verification, and Pearson's chi-square tests of interdependence. The factor shortlist was compared with the initial long list identified from the literature to understand the longitudinal trend. The trend manifested in this research necessitated a shift of project management focus from technical difficulties to managerial issues, signaled by the shifting emphasis from contractor planning and control to client monitoring and management and from project difficulties to contract qualities. The shortlisted factors and their interrelationships together formed a fragmentary mechanism and gave the model structure, which was quantified with Bayesian belief network analysis. The model automatically can calculate cost overrun potentials with relevant input and use influence diagrams to find optimal decisions maximizing the expected values of construction cost overrun potential. The predictive model achieved an accuracy rate of 92.4%, which is much higher than that of the comparable model established with the full formation mechanism. This demonstrated that mechanistic models featuring a fragmentary formation mechanism well achieved satisfactory prediction accuracy and efficiency. Therefore, this predictive model provides a framework for project auditors and other relevant project management personnel to monitor project cost proactively throughout the project lifecycle.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助kuankuan采纳,获得10
刚刚
英姑应助SHIMMER采纳,获得10
1秒前
嘿嘿应助专注的明轩采纳,获得10
1秒前
小黎发布了新的文献求助10
1秒前
Stella应助luye采纳,获得50
2秒前
3秒前
完美世界应助卷心菜采纳,获得20
3秒前
3秒前
4秒前
上喜阿蕾完成签到,获得积分10
4秒前
zbh022完成签到 ,获得积分10
4秒前
拒绝去偏旁完成签到 ,获得积分10
4秒前
思源应助zjk采纳,获得10
4秒前
5秒前
curry完成签到,获得积分10
5秒前
爱吃蔬菜发布了新的文献求助10
5秒前
科研通AI6应助XHL采纳,获得10
6秒前
爆米花应助沉默毛衣采纳,获得10
7秒前
蜘蛛发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
桐桐应助1111采纳,获得10
8秒前
8秒前
8秒前
wo_qq111发布了新的文献求助10
9秒前
curry发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
kad发布了新的文献求助20
11秒前
Hello应助卫海亦采纳,获得10
11秒前
浮游应助乐观的颦采纳,获得10
11秒前
顾矜应助Lily采纳,获得10
11秒前
12秒前
钱砖家完成签到,获得积分10
12秒前
_蝴蝶小姐发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360951
求助须知:如何正确求助?哪些是违规求助? 4491367
关于积分的说明 13982317
捐赠科研通 4394105
什么是DOI,文献DOI怎么找? 2413767
邀请新用户注册赠送积分活动 1406580
关于科研通互助平台的介绍 1381139