血小板
血小板活化
昼夜节律
莫辛
医学
基因剔除小鼠
内分泌学
内科学
出血时间
血栓
瑞斯托西汀
受体
细胞生物学
化学
生物
血管性血友病因子
细胞骨架
生物化学
埃兹林
血小板聚集
细胞
作者
Jianfeng Shi,Renyang Tong,Zhou Meng,Yu Gao,Yichao Zhao,Yifan Chen,Wenhua Liu,Gaoxiang Li,Dong Lu,Guofeng Meng,Liuhua Hu,Ancai Yuan,Xiyuan Lu,Jun Pu
标识
DOI:10.1093/eurheartj/ehac109
摘要
Abstract Aims Adverse cardiovascular events have day/night patterns with peaks in the morning, potentially related to endogenous circadian clock control of platelet activation. Circadian nuclear receptor Rev-erbα is an essential and negative component of the circadian clock. To date, the expression profile and biological function of Rev-erbα in platelets have never been reported. Methods and results Here, we report the presence and functions of circadian nuclear receptor Rev-erbα in human and mouse platelets. Both human and mouse platelet Rev-erbα showed a circadian rhythm that positively correlated with platelet aggregation. Global Rev-erbα knockout and platelet-specific Rev-erbα knockout mice exhibited defective in haemostasis as assessed by prolonged tail-bleeding times. Rev-erbα deletion also reduced ferric chloride-induced carotid arterial occlusive thrombosis, prevented collagen/epinephrine-induced pulmonary thromboembolism, and protected against microvascular microthrombi obstruction and infarct expansion in an acute myocardial infarction model. In vitro thrombus formation assessed by CD41-labelled platelet fluorescence intensity was significantly reduced in Rev-erbα knockout mouse blood. Platelets from Rev-erbα knockout mice exhibited impaired agonist-induced aggregation responses, integrin αIIbβ3 activation, and α-granule release. Consistently, pharmacological inhibition of Rev-erbα by specific antagonists decreased platelet activation markers in both mouse and human platelets. Mechanistically, mass spectrometry and co-immunoprecipitation analyses revealed that Rev-erbα potentiated platelet activation via oligophrenin-1-mediated RhoA/ERM (ezrin/radixin/moesin) pathway. Conclusion We provided the first evidence that circadian protein Rev-erbα is functionally expressed in platelets and potentiates platelet activation and thrombus formation. Rev-erbα may serve as a novel therapeutic target for managing thrombosis-based cardiovascular disease. Key question Adverse cardiovascular events have day/night patterns with peaks in the morning, potentially related to endogenous circadian clock control of platelet activation. Whether circadian nuclear receptor Rev-erba is present in platelets and regulates platelet function remains unknown. Key finding We provide the first evidence that Rev-erba is functionally expressed in platelets and acts as a positive regulator of platelet activation/thrombus formation through the oligophrenin-1-mediated RhoA/ERM signalling pathway. Take home message Our observations highlight the importance of circadian clock machinery in platelet physiology and support the notion that Rev-erba may serve as a novel therapeutic target for managing thrombosis-based cardiovascular diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI