神经影像学
医学
疾病
生物标志物
神经科学
阿尔茨海默病
心理学
静息状态功能磁共振成像
肿瘤科
内科学
生物
生物化学
作者
Peter R Millar,Patrick H. Luckett,Brian A. Gordon,Tammie L.S. Benzinger,Suzanne E. Schindler,Anne M. Fagan,Carlos Cruchaga,Randall J. Bateman,Ricardo Allegri,Mathias Jucker,Jae‐Hong Lee,Hiroshi Mori,Stephen Salloway,Igor Yakushev,John C. Morris,Beau M. Ances,Sarah Adams,Ricardo Allegri,Aki Araki,Nicolas R. Barthélemy
出处
期刊:NeuroImage
[Elsevier BV]
日期:2022-04-20
卷期号:256: 119228-119228
被引量:54
标识
DOI:10.1016/j.neuroimage.2022.119228
摘要
"Brain-predicted age" quantifies apparent brain age compared to normative neuroimaging trajectories. Advanced brain-predicted age has been well established in symptomatic Alzheimer disease (AD), but is underexplored in preclinical AD. Prior brain-predicted age studies have typically used structural MRI, but resting-state functional connectivity (FC) remains underexplored. Our model predicted age from FC in 391 cognitively normal, amyloid-negative controls (ages 18-89). We applied the trained model to 145 amyloid-negative, 151 preclinical AD, and 156 symptomatic AD participants to test group differences. The model accurately predicted age in the training set. FC-predicted brain age gaps (FC-BAG) were significantly older in symptomatic AD and significantly younger in preclinical AD compared to controls. There was minimal correspondence between networks predictive of age and AD. Elevated FC-BAG may reflect network disruption during symptomatic AD. Reduced FC-BAG in preclinical AD was opposite to the expected direction, and may reflect a biphasic response to preclinical AD pathology or may be driven by inconsistency between age-related vs. AD-related networks. Overall, FC-predicted brain age may be a sensitive AD biomarker.
科研通智能强力驱动
Strongly Powered by AbleSci AI