亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning–based algorithm improved radiologists’ performance in bone metastases detection on CT

医学 神经组阅片室 接收机工作特性 假阳性悖论 介入放射学 放射科 核医学 算法 人工智能 计算机科学 神经学 内科学 精神科
作者
Shunjiro Noguchi,Mizuho Nishio,Ryo Sakamoto,Masahiro Yakami,Koji Fujimoto,Yutaka Emoto,Takeshi Kubo,Yoshio Iizuka,Keita Nakagomi,Kazuhiro Miyasa,Kiyohide Satoh,Yuji Nakamoto
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (11): 7976-7987 被引量:28
标识
DOI:10.1007/s00330-022-08741-3
摘要

ObjectivesTo develop and evaluate a deep learning–based algorithm (DLA) for automatic detection of bone metastases on CT.MethodsThis retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance.ResultsA total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004).ConclusionWith the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time.Key Points• A deep learning–based algorithm for automatic detection of bone metastases on CT was developed.• In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm.• Radiologists’ interpretation time decreased at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tine完成签到,获得积分10
1秒前
NexusExplorer应助Victor陈采纳,获得10
2秒前
酷波er应助贾斯汀铁柱采纳,获得10
3秒前
可爱的函函应助manh123采纳,获得10
6秒前
7秒前
11秒前
我是老大应助DB采纳,获得10
11秒前
andrele发布了新的文献求助10
12秒前
13秒前
dlll发布了新的文献求助10
17秒前
峰feng完成签到 ,获得积分10
37秒前
38秒前
andrele发布了新的文献求助10
44秒前
在水一方应助科研通管家采纳,获得10
50秒前
今后应助科研通管家采纳,获得10
50秒前
51秒前
雪梅完成签到 ,获得积分10
56秒前
苹果笑寒完成签到 ,获得积分10
57秒前
59秒前
1分钟前
1分钟前
归尘发布了新的文献求助10
1分钟前
勤劳的冰菱完成签到,获得积分10
1分钟前
1分钟前
欢呼半山发布了新的文献求助10
1分钟前
1分钟前
manh123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
芦苇Qing发布了新的文献求助20
1分钟前
202281800001发布了新的文献求助10
1分钟前
Ava应助dlll采纳,获得10
1分钟前
1分钟前
CometF完成签到 ,获得积分10
1分钟前
科研通AI5应助kk采纳,获得10
1分钟前
202281800001完成签到,获得积分10
1分钟前
wry完成签到,获得积分10
1分钟前
精明的橘子完成签到,获得积分10
1分钟前
梅者如西完成签到,获得积分10
1分钟前
nn完成签到 ,获得积分10
1分钟前
高分求助中
新中国出版事业的先驱胡愈之 1500
Essentials of Mental Health 800
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Drug distribution in mammals 500
Parametric Random Vibration 400
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3853885
求助须知:如何正确求助?哪些是违规求助? 3396395
关于积分的说明 10596547
捐赠科研通 3118261
什么是DOI,文献DOI怎么找? 1718552
邀请新用户注册赠送积分活动 827620
科研通“疑难数据库(出版商)”最低求助积分说明 776926