Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

卷积神经网络 计算机科学 学习迁移 人工智能 深度学习 上下文图像分类 背景(考古学) 模式识别(心理学) 医学影像学 机器学习 目标检测 图像(数学) 特征提取 生物 古生物学
作者
Hoo-Chang Shin,Holger R. Roth,Mingchen Gao,Le Lü,Ziyue Xu,Isabella Nogues,Jianhua Yao,Daniel J. Mollura,Ronald M. Summers
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 1285-1298 被引量:4099
标识
DOI:10.1109/tmi.2016.2528162
摘要

Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkljlj发布了新的文献求助10
刚刚
reece完成签到 ,获得积分10
1秒前
丘比特应助Lris采纳,获得10
1秒前
aosiyi发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
大个应助Cannie_Niu采纳,获得10
2秒前
跳跃飞瑶应助zzzhhh采纳,获得10
3秒前
dyk关注了科研通微信公众号
3秒前
3秒前
英俊的流沙完成签到,获得积分10
4秒前
CodeCraft应助hhhi采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Fortune完成签到,获得积分10
4秒前
5秒前
方波完成签到,获得积分20
5秒前
5秒前
Jae完成签到 ,获得积分10
7秒前
7秒前
7秒前
PlutoZ发布了新的文献求助10
8秒前
8秒前
难过盼海发布了新的文献求助10
8秒前
FashionBoy应助无限的寄真采纳,获得10
8秒前
8秒前
8秒前
项阑悦完成签到,获得积分10
8秒前
英姑应助自然摩托采纳,获得10
9秒前
欣慰雪巧发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
xyh完成签到,获得积分10
11秒前
qiu发布了新的文献求助10
11秒前
11秒前
zk发布了新的文献求助10
11秒前
11秒前
judy891zhu发布了新的文献求助10
12秒前
没烦恼完成签到,获得积分10
12秒前
12秒前
搜集达人应助方波采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776732
求助须知:如何正确求助?哪些是违规求助? 5630711
关于积分的说明 15443875
捐赠科研通 4908787
什么是DOI,文献DOI怎么找? 2641419
邀请新用户注册赠送积分活动 1589404
关于科研通互助平台的介绍 1543973