Deep-Learning Tool ScVital Enables Species-Agnostic Integration of Cancer Cell States

计算生物学 计算机科学 自编码 生物学数据 癌症 鉴别器 快照(计算机存储) 生物信息学 生物 腺癌 数据集成 系统生物学 胰腺癌 生物信息学 相似性(几何) 一致性 细胞 先验与后验 癌细胞 生物网络 前列腺癌 数据挖掘 公制(单位) 人工智能 肿瘤异质性 转录组 癌症治疗 PTEN公司 可药性
作者
Jonathan Rub,Jason E Chan,Carleigh Sussman,Gary Guzman,William D. Tap,Cristina R. Antonescu,Samuel Singer,Tuomas Tammela,Doron Betel
出处
期刊:Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/0008-5472.can-24-4889
摘要

Abstract Genetically engineered mouse models (GEMM) of cancer are useful for exploring the development and biological composition of human tumors. Single-cell RNA-sequencing (scRNA-seq) provides a transcriptomic snapshot of cancer to explore heterogeneity of cell states in an immunocompetent context. However, cross-species comparison often suffers from biological batch effect and inherent differences between species decrease the signal of biological insights that can be gleaned from these models. Here, we developed scVital, a computational tool that uses a variational autoencoder and discriminator to embed scRNA-seq data into a species-agnostic latent space to overcome batch effect and identify cell states shared between species. In addition, latent space similarity (LSS) score was concurrently developed as a new metric to evaluate batch correction accuracy by leveraging pre-labeled clusters for scoring instead of the current method of creating new clusters. Using LSS for quantification, scVital performed comparably well relative to other deep learning algorithms and rapidly integrated scRNA-seq data of normal tissues across species with high fidelity. When scVital was applied to pancreatic ductal adenocarcinoma or lung adenocarcinoma data from GEMMs and primary patient samples, scVital accurately aligned biologically similar cell states. In undifferentiated pleomorphic sarcoma, a test case with no a priori knowledge of cell state concordance between mouse and human, scVital identified a previously unknown cell state that persisted after chemotherapy and is shared by a GEMM and human patient-derived xenografts. These findings establish the utility of scVital in identifying conserved cell states across species to enhance the translational capabilities of mouse models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助一汁蟹采纳,获得10
刚刚
1秒前
脑洞疼应助乐观的海采纳,获得10
2秒前
lhy发布了新的文献求助30
2秒前
土土完成签到,获得积分10
2秒前
张旭完成签到,获得积分10
2秒前
3秒前
3秒前
卓沅沅发布了新的文献求助10
3秒前
wu完成签到,获得积分10
3秒前
3秒前
3秒前
22年春_完成签到,获得积分10
4秒前
充电宝应助Nuts采纳,获得10
4秒前
5秒前
5秒前
stephanie96发布了新的文献求助10
5秒前
Winston发布了新的文献求助10
5秒前
魏青瑜完成签到 ,获得积分10
6秒前
轻云触月发布了新的文献求助10
6秒前
6秒前
Jenkin发布了新的文献求助10
6秒前
久9发布了新的文献求助10
7秒前
隐形曼青应助直率的忆南采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
dxh发布了新的文献求助10
9秒前
9秒前
紫霄客完成签到,获得积分10
9秒前
烂漫的雅容完成签到,获得积分10
10秒前
华仔应助独特从蓉采纳,获得10
10秒前
10秒前
景向完成签到,获得积分10
10秒前
热情碧凡发布了新的文献求助30
10秒前
Owen应助羊村你喜哥采纳,获得10
10秒前
NexusExplorer应助wwe采纳,获得10
11秒前
11秒前
小叶子发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341805
求助须知:如何正确求助?哪些是违规求助? 4477914
关于积分的说明 13937122
捐赠科研通 4374126
什么是DOI,文献DOI怎么找? 2403300
邀请新用户注册赠送积分活动 1396120
关于科研通互助平台的介绍 1368147