已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computationally predicting protein-RNA interactions using only positive and unlabeled examples

支持向量机 水准点(测量) 人工智能 计算机科学 特征选择 机器学习 滤波器(信号处理) 特征(语言学) 数据挖掘 特征向量 模式识别(心理学) 大地测量学 计算机视觉 语言学 哲学 地理
作者
Zhanzhan Cheng,Shuigeng Zhou,Jihong Guan
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:13 (03): 1541005-1541005 被引量:29
标识
DOI:10.1142/s021972001541005x
摘要

Protein–RNA interactions (PRIs) are considerably important in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulations of gene expression to the active defense of host against virus. With the development of high throughput technology, large amounts of PRI information is available for computationally predicting unknown PRIs. In recent years, a number of computational methods for predicting PRIs have been developed in the literature, which usually artificially construct negative samples based on verified nonredundant datasets of PRIs to train classifiers. However, such negative samples are not real negative samples, some even may be unknown positive samples. Consequently, the classifiers trained with such training datasets cannot achieve satisfactory prediction performance. In this paper, we propose a novel method PRIPU that employs biased-support vector machine (SVM) for predicting Protein-RNA Interactions using only Positive and Unlabeled examples. To the best of our knowledge, this is the first work that predicts PRIs using only positive and unlabeled samples. We first collect known PRIs as our benchmark datasets and extract sequence-based features to represent each PRI. To reduce the dimension of feature vectors for lowering computational cost, we select a subset of features by a filter-based feature selection method. Then, biased-SVM is employed to train prediction models with different PRI datasets. To evaluate the new method, we also propose a new performance measure called explicit positive recall (EPR), which is specifically suitable for the task of learning positive and unlabeled data. Experimental results over three datasets show that our method not only outperforms four existing methods, but also is able to predict unknown PRIs. Source code, datasets and related documents of PRIPU are available at: http://admis.fudan.edu.cn/projects/pripu.htm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助XP采纳,获得10
5秒前
11秒前
如约而至完成签到 ,获得积分10
11秒前
13秒前
18秒前
朴素金毛完成签到 ,获得积分10
18秒前
19秒前
隐形曼青应助nickel采纳,获得10
19秒前
XP发布了新的文献求助10
21秒前
25秒前
25秒前
26秒前
27秒前
28秒前
29秒前
Stefani发布了新的文献求助10
30秒前
punch完成签到 ,获得积分10
31秒前
nickel发布了新的文献求助10
32秒前
silence发布了新的文献求助10
33秒前
贾舒涵发布了新的文献求助30
33秒前
科研通AI5应助lgbabe采纳,获得10
34秒前
慕青应助yy0322采纳,获得10
35秒前
聪慧冰兰发布了新的文献求助10
35秒前
摸鱼咯完成签到 ,获得积分10
36秒前
xu发布了新的文献求助10
39秒前
洁净亦巧完成签到,获得积分10
40秒前
41秒前
充电宝应助yyymmma采纳,获得10
42秒前
ding发布了新的文献求助50
42秒前
43秒前
刺猬快快跑完成签到,获得积分10
44秒前
Ava应助jj采纳,获得10
45秒前
Samming完成签到 ,获得积分10
46秒前
Zyysby发布了新的文献求助30
46秒前
dxszing完成签到,获得积分10
47秒前
49秒前
kmmu0611完成签到 ,获得积分10
50秒前
科研通AI5应助瓦斯采纳,获得30
52秒前
一只羊完成签到 ,获得积分10
53秒前
慕青应助科研通管家采纳,获得10
58秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788045
求助须知:如何正确求助?哪些是违规求助? 3333573
关于积分的说明 10262471
捐赠科研通 3049374
什么是DOI,文献DOI怎么找? 1673536
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477