脂肪组织
内科学
内分泌学
刺激
褐色脂肪组织
白色脂肪组织
产热
儿茶酚胺
脂肪组织巨噬细胞
交感神经系统
生物
酪氨酸羟化酶
受体
细胞生物学
脂肪细胞
化学
产热素
多巴胺
医学
血压
作者
Katrin Fischer,Henry H. Ruiz,Kevin Jhun,Brian Finan,Douglas J. Oberlin,Verena van der Heide,Anastasia V. Kalinovich,Nataša Petrovič,Yochai Wolf,Christoffer Clemmensen,Andrew C. Shin,Senad Divanovic,Frank Brombacher,Elke Glasmacher,Susanne Keipert,Martin Jastroch,Joachim Nagler,K.‐W. Schramm,Daša Medříková,Gustav Colldén
出处
期刊:Nature Medicine
[Nature Portfolio]
日期:2017-04-17
卷期号:23 (5): 623-630
被引量:309
摘要
In contrast to previously reported findings, M2-like polarized macrophages are not a source of catecholamines and do not contribute to browning of the fat. Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through β3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue. Recent studies have reported that alternative activation of macrophages in response to interleukin (IL)-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and that this activation provides an alternative source of locally produced catecholamines during the thermogenic process. Here we report that the deletion of Th in hematopoietic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow–derived macrophages did not release NE in response to stimulation with IL-4, and conditioned media from IL-4-stimulated macrophages failed to induce expression of thermogenic genes, such as uncoupling protein 1 (Ucp1), in adipocytes cultured with the conditioned media. Furthermore, chronic treatment with IL-4 failed to increase energy expenditure in wild-type, Ucp1−/− and interleukin-4 receptor-α double-negative (Il4ra−/−) mice. In agreement with these findings, adipose-tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines, and hence, are not likely to have a direct role in adipocyte metabolism or adaptive thermogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI