计算机科学
元数据
本体论
数据挖掘
数据集成
代谢组学
数据质量
仿形(计算机编程)
数据科学
情报检索
生物信息学
工程类
生物
认识论
操作系统
运营管理
哲学
公制(单位)
作者
Patricia Buendia,Ray M. Bradley,Thomas J. Taylor,Emma Schymanski,Gary J. Patti,Mansur R. Kabuka
出处
期刊:Bioanalysis
[Future Science Ltd]
日期:2019-06-01
卷期号:11 (12): 1139-1154
被引量:8
标识
DOI:10.4155/bio-2018-0303
摘要
Aim: The complications that arise when performing meta-analysis of datasets from multiple metabolomics studies are addressed with computational methods that ensure data quality, completeness of metadata and accurate interpretation across studies. Results & methodology: This paper presents an integrated system of quality control (QC) methods to assess metabolomics results by evaluating the data acquisition strategies and metabolite identification process when integrating datasets for meta-analysis. An ontology knowledge base and a rule-based system representing the experiment and chemical background information direct the processes involved in data integration and QC verification. A diabetes meta-analysis study using these QC methods finds putative biomarkers that differ between cohorts. Conclusion: The methods presented here ensure the validity of meta-analysis when integrating data from different metabolic profiling studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI