A System for In-Line 3D Inspection without Hidden Surfaces

计算机视觉 人工智能 计算机科学 对象(语法) 代表(政治) 直线(几何图形) 扫描仪 容器(类型理论) 曲面(拓扑) 影子(心理学) 计算机图形学(图像) 工程类 数学 几何学 法学 心理治疗师 政治 机械工程 政治学 心理学
作者
Juan‐Carlos Perez‐Cortes,Alberto Pérez,Sergio Sáez,Jose-Luis Guardiola,Ismael Salvador
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:18 (9): 2993-2993 被引量:20
标识
DOI:10.3390/s18092993
摘要

This work presents a 3D scanner able to reconstruct a complete object without occlusions, including its surface appearance. The technique presents a number of differences in relation to current scanners: it does not require mechanical handling like robot arms or spinning plates, it is free of occlusions since the scanned part is not resting on any surface and, unlike stereo-based methods, the object does not need to have visual singularities on its surface. This system, among other applications, allows its integration in production lines that require the inspection of a large volume of parts or products, especially if there is an important variability of the objects to be inspected, since there is no mechanical manipulation. The scanner consists of a variable number of industrial quality cameras conveniently distributed so that they can capture all the surfaces of the object without any blind spot. The object is dropped through the common visual field of all the cameras, so no surface or tool occludes the views that are captured simultaneously when the part is in the center of the visible volume. A carving procedure that uses the silhouettes segmented from each image gives rise to a volumetric representation and, by means of isosurface generation techniques, to a 3D model. These techniques have certain limitations on the reconstruction of object regions with particular geometric configurations. Estimating the inherent maximum error in each area is important to bound the precision of the reconstruction. A number of experiments are presented reporting the differences between ideal and reconstructed objects in the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助CC采纳,获得10
刚刚
刚刚
伍星宇完成签到,获得积分10
刚刚
Hello应助Rz采纳,获得10
1秒前
科目三应助Rz采纳,获得10
1秒前
ding应助Rz采纳,获得10
1秒前
Jasper应助Rz采纳,获得10
1秒前
打打应助Rz采纳,获得40
1秒前
2秒前
2秒前
2秒前
2秒前
亚胺培南西司他丁钠完成签到,获得积分10
2秒前
uni发布了新的文献求助10
3秒前
冰山未闯完成签到,获得积分10
4秒前
momo完成签到,获得积分10
4秒前
dldlwzdl完成签到,获得积分20
4秒前
Alicyclobacillus完成签到,获得积分10
5秒前
5秒前
田様应助张茗瑄采纳,获得10
5秒前
咕咕完成签到,获得积分10
5秒前
科研通AI5应助体贴的钥匙采纳,获得10
5秒前
CodeCraft应助孙佳婷采纳,获得10
5秒前
6秒前
丹丹发布了新的文献求助10
6秒前
Jiao发布了新的文献求助10
6秒前
zmj发布了新的文献求助10
7秒前
fd163c发布了新的文献求助10
7秒前
快乐的水杯完成签到,获得积分10
7秒前
7秒前
ABC发布了新的文献求助10
7秒前
欢呼小蚂蚁完成签到,获得积分10
8秒前
zyx关闭了zyx文献求助
8秒前
刘佳敏完成签到 ,获得积分10
9秒前
niumi190完成签到,获得积分0
9秒前
李健的小迷弟应助uni采纳,获得10
9秒前
xdd完成签到 ,获得积分10
10秒前
10秒前
10秒前
jx完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796073
求助须知:如何正确求助?哪些是违规求助? 3341050
关于积分的说明 10304104
捐赠科研通 3057671
什么是DOI,文献DOI怎么找? 1677780
邀请新用户注册赠送积分活动 805630
科研通“疑难数据库(出版商)”最低求助积分说明 762730