已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Expansion of Redox Chemistry in Designer Metalloenzymes

氧化还原 化学 氧化还原 纳米技术 组合化学 生化工程 有机化学 材料科学 工程类 生物化学
作者
Yang Yu,Xiaohong Liu,Jiangyun Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (3): 557-565 被引量:37
标识
DOI:10.1021/acs.accounts.8b00627
摘要

ConspectusMany artificial enzymes that catalyze redox reactions have important energy, environmental, and medical applications. Native metalloenzymes use a set of redox-active amino acids and cofactors as redox centers, with a potential range between −700 and +800 mV versus standard hydrogen electrode (SHE, all reduction potentials are versus SHE). The redox potentials and the orientation of redox centers in native metalloproteins are optimal for their redox chemistry. However, the limited number and potential range of native redox centers challenge the design and optimization of novel redox chemistry in metalloenzymes. Artificial metalloenzymes use non-native redox centers and could go far beyond the natural range of redox potentials for novel redox chemistry. In addition to designing protein monomers, strategies for increasing the electron transfer rate in self-assembled protein complexes and protein–electrode or −nanomaterial interfaces will be discussed.Redox reactions in proteins occur on redox active amino acid residues (Tyr, Trp, Met, Cys, etc.) and cofactors (iron sulfur clusters, flavin, heme, etc.). The redox potential of these redox centers cover a ∼1.5 V range and is optimized for their specific functions. Despite recent progress, tuning the redox potential for amino acid residues or cofactors remains challenging. Many redox-active unnatural amino acids (UAAs) can be incorporated into protein via genetic codon expansion. Their redox potentials extend the range of physiologically relevant potentials. Indeed, installing new redox cofactors with fined-tuned redox potentials is essential for designing novel redox enzymes. By combining UAA and redox cofactor incorporation, we harnessed light energy to reduce CO2 in a fluorescent protein, mimicking photosynthetic apparatus in nature.Manipulating the position and reduction potential of redox centers inside proteins is important for optimizing the electron transfer rate and the activity of artificial enzymes. Learning from the native electron transfer complex, protein–protein interactions can be enhanced by increasing the electrostatic interaction between proteins. An artificial oxidase showed close to native enzyme activity with optimized interaction with electron transfer partner and increased electron transfer efficiency. In addition to the de novo design of protein–protein interaction, protein self-assembly methods using scaffolds, such as proliferating cell nuclear antigen, to efficiently anchor enzymes and their redox partners. The self-assembly process enhances electron transfer efficiency and enzyme activity by bringing redox centers into close proximity of each other.In addition to protein self-assembly, protein–electrode or protein–nanomaterial self-assembly can also promote efficient electron transfer from inorganic materials to enzyme active sites. Such hybrid systems combine the efficiency of enzyme reactions and the robustness of electrodes or nanomaterials, often with advantageous catalytic activities.By combining these strategies, we can not only mimic some of nature's most fascinating reactions, such as photosynthesis and aerobic respiration, but also transcend nature toward environmental, energy, and health applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
党参发布了新的文献求助20
7秒前
SciGPT应助王帅松采纳,获得10
9秒前
bean完成签到 ,获得积分10
10秒前
mellow完成签到,获得积分10
10秒前
10秒前
打打应助小鱼采纳,获得10
12秒前
13秒前
自由的淇完成签到 ,获得积分10
13秒前
漂亮白云完成签到 ,获得积分10
13秒前
体贴映阳完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
秦秦完成签到,获得积分10
20秒前
周周完成签到 ,获得积分10
20秒前
香蕉觅云应助花花521采纳,获得30
23秒前
23秒前
24秒前
MrC7777发布了新的文献求助10
24秒前
25秒前
cgz发布了新的文献求助10
26秒前
26秒前
Lucky发布了新的文献求助30
27秒前
27秒前
28秒前
飞荷完成签到,获得积分20
28秒前
28秒前
虫子发布了新的文献求助30
28秒前
Luna完成签到 ,获得积分10
29秒前
小鱼发布了新的文献求助10
30秒前
木木完成签到,获得积分20
31秒前
聪明的青雪完成签到,获得积分10
31秒前
32秒前
32秒前
王帅松发布了新的文献求助10
33秒前
pinecone发布了新的文献求助10
33秒前
木木发布了新的文献求助20
34秒前
35秒前
今我来思发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832832
求助须知:如何正确求助?哪些是违规求助? 4137405
关于积分的说明 12806529
捐赠科研通 3880516
什么是DOI,文献DOI怎么找? 2134283
邀请新用户注册赠送积分活动 1154374
关于科研通互助平台的介绍 1052843