Expansion of Redox Chemistry in Designer Metalloenzymes

氧化还原 化学 氧化还原 纳米技术 组合化学 生化工程 有机化学 材料科学 工程类 生物化学
作者
Yang Yu,Xiaohong Liu,Jiangyun Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (3): 557-565 被引量:37
标识
DOI:10.1021/acs.accounts.8b00627
摘要

ConspectusMany artificial enzymes that catalyze redox reactions have important energy, environmental, and medical applications. Native metalloenzymes use a set of redox-active amino acids and cofactors as redox centers, with a potential range between −700 and +800 mV versus standard hydrogen electrode (SHE, all reduction potentials are versus SHE). The redox potentials and the orientation of redox centers in native metalloproteins are optimal for their redox chemistry. However, the limited number and potential range of native redox centers challenge the design and optimization of novel redox chemistry in metalloenzymes. Artificial metalloenzymes use non-native redox centers and could go far beyond the natural range of redox potentials for novel redox chemistry. In addition to designing protein monomers, strategies for increasing the electron transfer rate in self-assembled protein complexes and protein–electrode or −nanomaterial interfaces will be discussed.Redox reactions in proteins occur on redox active amino acid residues (Tyr, Trp, Met, Cys, etc.) and cofactors (iron sulfur clusters, flavin, heme, etc.). The redox potential of these redox centers cover a ∼1.5 V range and is optimized for their specific functions. Despite recent progress, tuning the redox potential for amino acid residues or cofactors remains challenging. Many redox-active unnatural amino acids (UAAs) can be incorporated into protein via genetic codon expansion. Their redox potentials extend the range of physiologically relevant potentials. Indeed, installing new redox cofactors with fined-tuned redox potentials is essential for designing novel redox enzymes. By combining UAA and redox cofactor incorporation, we harnessed light energy to reduce CO2 in a fluorescent protein, mimicking photosynthetic apparatus in nature.Manipulating the position and reduction potential of redox centers inside proteins is important for optimizing the electron transfer rate and the activity of artificial enzymes. Learning from the native electron transfer complex, protein–protein interactions can be enhanced by increasing the electrostatic interaction between proteins. An artificial oxidase showed close to native enzyme activity with optimized interaction with electron transfer partner and increased electron transfer efficiency. In addition to the de novo design of protein–protein interaction, protein self-assembly methods using scaffolds, such as proliferating cell nuclear antigen, to efficiently anchor enzymes and their redox partners. The self-assembly process enhances electron transfer efficiency and enzyme activity by bringing redox centers into close proximity of each other.In addition to protein self-assembly, protein–electrode or protein–nanomaterial self-assembly can also promote efficient electron transfer from inorganic materials to enzyme active sites. Such hybrid systems combine the efficiency of enzyme reactions and the robustness of electrodes or nanomaterials, often with advantageous catalytic activities.By combining these strategies, we can not only mimic some of nature's most fascinating reactions, such as photosynthesis and aerobic respiration, but also transcend nature toward environmental, energy, and health applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
11发布了新的文献求助10
1秒前
shirely发布了新的文献求助10
2秒前
YAN应助师震铎采纳,获得10
2秒前
3秒前
emile发布了新的文献求助10
3秒前
4秒前
dckiop发布了新的文献求助10
5秒前
玩命的青亦完成签到,获得积分10
5秒前
太叔夜南完成签到,获得积分10
5秒前
十月天秤完成签到,获得积分0
6秒前
可爱的函函应助vickki采纳,获得10
6秒前
7秒前
9秒前
1241343948发布了新的文献求助10
9秒前
烂漫的飞松完成签到,获得积分10
9秒前
无心的满天完成签到,获得积分20
10秒前
小二郎应助海棠未眠采纳,获得10
10秒前
FashionBoy应助疯狂的缘分采纳,获得10
11秒前
粥粥发布了新的文献求助10
12秒前
dckiop完成签到,获得积分10
12秒前
浮游应助腼腆的又槐采纳,获得10
13秒前
计划明天炸地球完成签到 ,获得积分10
13秒前
zx完成签到,获得积分10
15秒前
jyh完成签到,获得积分20
15秒前
16秒前
禽兽琦完成签到,获得积分10
16秒前
17秒前
yznfly应助你好采纳,获得40
18秒前
小小和冲冲冲完成签到,获得积分10
18秒前
18秒前
科研啄木鸟完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
happy完成签到 ,获得积分10
19秒前
20秒前
20秒前
科研通AI6应助斯文广山采纳,获得10
21秒前
21秒前
21秒前
师震铎完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495384
求助须知:如何正确求助?哪些是违规求助? 4593053
关于积分的说明 14439596
捐赠科研通 4525892
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464570
关于科研通互助平台的介绍 1437425