DNA测序
计算生物学
生物
亚细胞定位
DNA微阵列
寡核苷酸
结扎
适体
基因表达谱
DNA
微流控
蛋白质组学
原位
细胞生物学
基因组
分子生物学
DNA–DNA杂交
仿形(计算机编程)
大规模并行测序
化学
纳米结构
DNA条形码
多路复用
基因
条形码
分子生物物理学
蛋白质亚细胞定位预测
互补DNA
荧光显微镜
核酸热力学
纳米技术
杂交探针
序列分析
胶体金
DNA分析
生物物理学
纳米颗粒
杂交测序
作者
Noah R. Sundah,Nicholas R. Y. Ho,Geok Soon Lim,Auginia Natalia,Xianguang Ding,Yu Liu,Ju Ee Seet,Ching Wan Chan,Tze Ping Loh,Huilin Shao
标识
DOI:10.1038/s41551-019-0417-0
摘要
Massively parallel DNA sequencing is established, yet high-throughput protein profiling remains challenging. Here, we report a barcoding approach that leverages the combinatorial sequence content and the configurational programmability of DNA nanostructures for high-throughput multiplexed profiling of the subcellular expression and distribution of proteins in whole cells. The barcodes are formed by in situ hybridization of tetrahedral DNA nanostructures and short DNA sequences conjugated with protein-targeting antibodies, and by nanostructure-assisted ligation (either enzymatic or chemical) of the nanostructures and exogenous DNA sequences bound to nanoparticles of different sizes (which cause these localization sequences to differentially distribute across subcellular compartments). Compared with linear DNA barcoding, the nanostructured barcodes enhance the signal by more than 100-fold. By implementing the barcoding approach on a microfluidic device for the analysis of rare patient samples, we show that molecular subtypes of breast cancer can be accurately classified and that subcellular spatial markers of disease aggressiveness can be identified.
科研通智能强力驱动
Strongly Powered by AbleSci AI