亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On Studying Information Dissemination in Social-Physical Interdependent Networks

相互依存 计算机科学 节点(物理) 社交网络(社会语言学) 信息传播 互联网隐私 万维网 社会化媒体 社会学 社会科学 结构工程 工程类
作者
Mingkui Wei,Jie Wang,Zhuo Lu,Wenye Wang
标识
DOI:10.1109/icc.2019.8761137
摘要

Most existing studies for information dissemination in the online social network are based on variations of the classical epidemic model. In such a model, nodes recursively infect, or share information to, their neighboring nodes with a certain probability. The higher degree a node has, the more likely it gets infected by its neighbors. Although widely accepted, we found there are certain discrepancies between existing epidemic models and social interactions in reality. Firstly, the real-world social network is actually a dual-layered network, where a person shares information online to her online friends, and also offline to her real-life friends. More importantly, since a computer do not automatically share information, a computer exposed to information will not effectively receive it (i.e., getting infected and starting to infect others) unless its user receives it. Secondly, contrary to the epidemic model, the more friends a person has, the less likely she is going to effectively receive a certain piece of message (just imagine how easily a message can be flushed and ignored by a human user because of overwhelming newer information). In other words, in social networks, the infection rate of a node may not be positively correlated with its degree. Based on these observations, we develop the social-physical interdependent (SPI) model to capture and analyze the unique characters of social networks. Our study provides new observations, and sheds light on a new direction for the study of information dissemination in social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
开朗子默发布了新的文献求助20
15秒前
执着的草丛完成签到,获得积分10
26秒前
zsmj23完成签到 ,获得积分0
38秒前
gooooood完成签到 ,获得积分10
39秒前
39秒前
51秒前
梅者如西发布了新的文献求助30
54秒前
59秒前
1分钟前
he发布了新的文献求助10
1分钟前
呜呜吴完成签到,获得积分10
1分钟前
qpp完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助梅者如西采纳,获得10
1分钟前
烟花应助梅者如西采纳,获得10
1分钟前
Ccc发布了新的文献求助10
1分钟前
1分钟前
小马甲应助he采纳,获得10
1分钟前
zhoushishan完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
单薄水星发布了新的文献求助10
2分钟前
U87完成签到,获得积分10
2分钟前
单薄水星完成签到,获得积分10
2分钟前
2分钟前
朗源Wu发布了新的文献求助10
2分钟前
2分钟前
朱志伟发布了新的文献求助10
2分钟前
从来都不会放弃zr完成签到,获得积分10
2分钟前
2分钟前
he发布了新的文献求助10
3分钟前
李健的小迷弟应助he采纳,获得10
3分钟前
嘻嘻哈哈应助巫马百招采纳,获得10
3分钟前
3分钟前
科研通AI6应助尊敬的芷卉采纳,获得30
3分钟前
科研通AI6应助尊敬的芷卉采纳,获得30
3分钟前
赘婿应助尊敬的芷卉采纳,获得10
3分钟前
所所应助尊敬的芷卉采纳,获得30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470146
求助须知:如何正确求助?哪些是违规求助? 4573063
关于积分的说明 14338019
捐赠科研通 4500055
什么是DOI,文献DOI怎么找? 2465527
邀请新用户注册赠送积分活动 1453892
关于科研通互助平台的介绍 1428508