Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools

离散化 搭配(遥感) 反褶积 径向基函数 计算机科学 算法 基函数 分段 收敛速度 应用数学 连续特征的离散化 放松(心理学) 数学分析 数学 数学优化 人工神经网络 人工智能 离散化误差 机器学习 频道(广播) 心理学 社会心理学 计算机网络
作者
Ting Hei Wan,Mattia Saccoccio,Chi Chen,Francesco Ciucci
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:184: 483-499 被引量:1394
标识
DOI:10.1016/j.electacta.2015.09.097
摘要

The distribution of relaxation times (DRT) is an approach that can extract time characteristics of an electrochemical system from electrochemical impedance spectroscopy (EIS) measurements. Computing the DRT is difficult because it is an intrinsically ill-posed problem often requiring regularization. In order to improve the estimation of the DRT and to better control its error, a suitable discretization basis for the regularized regression needs to be chosen. However, this aspect has been invariably overlooked in the specialized literature. Pseudo-spectral methods using radial basis functions (RBFs) are, in principle, a better choice in comparison to other discretization basis, such as piecewise linear (PWL) functions, because they may achieve fast convergence. Furthermore, they can yield improved estimation by extending the estimated DRT to the entire frequency spectrum, if the underlying DRT decays to zero sufficiently fast outside the measured frequency range. Additionally, their implementation is relatively easier than other types of pseudo-spectral methods since they do not require ad hoc collocation point distributions. The as-developed novel RBF-based DRT framework was tested against controlled synthetic EIS spectra and real experimental data. Our results indicate that the RBF discretization performance is comparable with that of the PWL discretization at normal data collection range, and with improvement when the EIS acquisition is incomplete. In addition, we also show that applying RBF discretization for deconvolving the DRT problem can lead to faster numerical convergence rate as compared with that of PWL discretization only at error free situation. As a companion to this work we have developed a MATLAB GUI toolbox, which can be used to solve DRT regularization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Metx完成签到 ,获得积分10
4秒前
活力的语堂完成签到,获得积分10
4秒前
able完成签到 ,获得积分10
6秒前
Linda完成签到,获得积分10
7秒前
DaSheng发布了新的文献求助10
7秒前
flyabc完成签到,获得积分10
8秒前
8秒前
zcydbttj2011完成签到 ,获得积分10
13秒前
KimJongUn完成签到,获得积分10
13秒前
李清水完成签到,获得积分10
14秒前
蟲先生完成签到 ,获得积分0
16秒前
张铁柱完成签到,获得积分10
17秒前
tt完成签到,获得积分10
17秒前
胡图完成签到,获得积分10
18秒前
科研通AI2S应助ENVY采纳,获得10
18秒前
zll完成签到,获得积分10
19秒前
21秒前
认真的问枫完成签到 ,获得积分10
22秒前
22秒前
卑微的学牛马完成签到,获得积分10
23秒前
苹果新儿完成签到,获得积分10
23秒前
23秒前
淡dan完成签到,获得积分10
24秒前
清秀的砖头完成签到,获得积分10
24秒前
小马甲应助liz采纳,获得30
25秒前
Zachary完成签到 ,获得积分10
26秒前
求知若渴完成签到,获得积分10
26秒前
leo发布了新的文献求助30
27秒前
car子完成签到 ,获得积分10
28秒前
fanfan完成签到 ,获得积分10
31秒前
31秒前
小烦同学完成签到,获得积分10
32秒前
33秒前
阳光的梦寒完成签到,获得积分10
33秒前
ENVY完成签到,获得积分10
35秒前
研友_LMBAXn完成签到,获得积分10
36秒前
yuchangkun发布了新的文献求助10
36秒前
Ellie完成签到 ,获得积分10
37秒前
西溪完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782897
求助须知:如何正确求助?哪些是违规求助? 3328185
关于积分的说明 10235295
捐赠科研通 3043240
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759033