材料科学
纳米纤维
碳纳米纤维
阴极
碳化
静电纺丝
碳纤维
纳米颗粒
化学工程
纳米技术
复合材料
复合数
碳纳米管
扫描电子显微镜
聚合物
化学
物理化学
工程类
作者
Lin Chen,Bo Yan,Jing Xu,Chunguang Wang,Yimin Chao,Xuefan Jiang,Gang Yang
标识
DOI:10.1021/acsami.5b02618
摘要
In this work, the composite structure of Li3V2(PO4)3 (LVP) nanoparticles with carbon nanofibers (CNF) is designed. The size and location of LVP particles, and the degree of graphitization and diameter of carbon nanofibers, are optimized by electrospinning and heat treatment. The bicontinuous morphologies of LVP/CNF are dependent on the carbonization of PVP and simultaneous growing of LVP, with the fibers shrunk and the LVP crystals grown toward the outside. LVP nanocystals clustered via carbon nanofibers guarantee improving the diffusion ability of Li(+), and the carbon fiber simultaneously guarantees the effective electron conductivity. Compared with the simple carbon-coated LVP and pure LVP, the particle-clustered structure guarantees high rate capability and long-life cycling stability of NF-LVP as cathode for LIBs. At 20 C rate in the range 3.0-4.3 V, NF-LVP delivers the initial capacity of 122.6 mAh g(-1) close to the theoretical value of 133 mAh g(-1), and maintains 97% of the initial capacity at the 1000th cycle. The bead-like structure of cathode material clustered via carbon nanofibers via electrospinning will be further applied to high-performance LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI