Deep Learning Prediction of Survival in Patients with Chronic Obstructive Pulmonary Disease Using Chest Radiographs

医学 肺病 射线照相术 内科学 疾病 放射科 重症监护医学
作者
Ju Gang Nam,Hye-Rin Kang,Sang Min Lee,Hyungjin Kim,Chanyoung Rhee,Jin Mo Goo,Yeon‐Mok Oh,Chang‐Hoon Lee,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (1): 199-208 被引量:25
标识
DOI:10.1148/radiol.212071
摘要

Background Preexisting indexes for predicting the prognosis of chronic obstructive pulmonary disease (COPD) do not use radiologic information and are impractical because they involve complex history assessments or exercise tests. Purpose To develop and to validate a deep learning-based survival prediction model in patients with COPD (DLSP) using chest radiographs, in addition to other clinical factors. Materials and Methods In this retrospective study, data from patients with COPD who underwent postbronchodilator spirometry and chest radiography from 2011-2015 were collected and split into training (n = 3475), validation (n = 435), and internal test (n = 315) data sets. The algorithm for predicting survival from chest radiographs was trained (hereafter, DLSPCXR), and then age, body mass index, and forced expiratory volume in 1 second (FEV1) were integrated within the model (hereafter, DLSPinteg). For external test, three independent cohorts were collected (n = 394, 416, and 337). The discrimination performance of DLSPCXR was evaluated by using time-dependent area under the receiver operating characteristic curves (TD AUCs) at 5-year survival. Goodness of fit was assessed by using the Hosmer-Lemeshow test. Using one external test data set, DLSPinteg was compared with four COPD-specific clinical indexes: BODE, ADO, COPD Assessment Test (CAT), and St George's Respiratory Questionnaire (SGRQ). Results DLSPCXR had a higher performance at predicting 5-year survival than FEV1 in two of the three external test cohorts (TD AUC: 0.73 vs 0.63 [P = .004]; 0.67 vs 0.60 [P = .01]; 0.76 vs 0.77 [P = .91]). DLSPCXR demonstrated good calibration in all cohorts. The DLSPinteg model showed no differences in TD AUC compared with BODE (0.87 vs 0.80; P = .34), ADO (0.86 vs 0.89; P = .51), and SGRQ (0.86 vs 0.70; P = .09), and showed higher TD AUC than CAT (0.93 vs 0.55; P < .001). Conclusion A deep learning model using chest radiographs was capable of predicting survival in patients with chronic obstructive pulmonary disease. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助小舟采纳,获得30
1秒前
李健的小迷弟应助11采纳,获得10
1秒前
zj完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
哒丝萌德完成签到,获得积分10
2秒前
3秒前
科研通AI6应助lejunia采纳,获得10
3秒前
单薄大白发布了新的文献求助10
3秒前
华仔应助asd_1采纳,获得10
4秒前
4秒前
Witness发布了新的文献求助10
5秒前
直率路人完成签到,获得积分10
5秒前
5秒前
芒果发布了新的文献求助10
5秒前
嘻哈师徒发布了新的文献求助10
5秒前
李爱国应助震动的牛排采纳,获得10
6秒前
lumen发布了新的文献求助10
7秒前
8秒前
9秒前
zj发布了新的文献求助10
10秒前
11秒前
wyh完成签到 ,获得积分10
12秒前
zero完成签到,获得积分10
13秒前
跳跃夜白发布了新的文献求助20
13秒前
小马甲应助LZT采纳,获得10
13秒前
斯文败类应助dan1029采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
Meyako应助dan1029采纳,获得10
14秒前
小二郎应助dan1029采纳,获得10
14秒前
14秒前
hangzhen发布了新的文献求助10
15秒前
充电宝应助lumen采纳,获得10
15秒前
布丁完成签到 ,获得积分10
15秒前
不是细菌完成签到,获得积分10
15秒前
银月葱头完成签到,获得积分10
15秒前
yzm11发布了新的文献求助10
16秒前
17秒前
无花果应助高振航采纳,获得10
17秒前
莱恩完成签到 ,获得积分20
18秒前
Tomma完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5045808
求助须知:如何正确求助?哪些是违规求助? 4275058
关于积分的说明 13326178
捐赠科研通 4088973
什么是DOI,文献DOI怎么找? 2237435
邀请新用户注册赠送积分活动 1244542
关于科研通互助平台的介绍 1172685