亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Physical and Machine Learning Model for Assessing Landslide Spatial Probability Caused by Raising of Ground Water Table and Earthquake in Atsuma, Japan — Case Study

山崩 峰值地面加速度 人工神经网络 台风 接收机工作特性 多层感知器 地震振动台 仰角(弹道) 机器学习 人工智能 地质学 算法 计算机科学 地震学 工程类 岩土工程 气象学 结构工程 地理 地震动
作者
Ba-Quang-Vinh Nguyen,Chang-Ho Song,Yun-Tae Kim
出处
期刊:Ksce Journal of Civil Engineering [Springer Science+Business Media]
卷期号:26 (8): 3416-3429 被引量:4
标识
DOI:10.1007/s12205-022-1656-2
摘要

Landslides are catastrophic natural events primed and/or triggered by extreme rainfalls and strong earthquakes. Simultaneous occurrence of rainfall and seismic activity increases the likelihood of landslides. However, the researchers focused on this aspect are not much. In the present research, a hybrid model was developed to predict the landslide occurrences probability in Atsuma, Japan triggered by rainfalls and earthquakes. The proposed model is a combination of a physical and machine learning model for improving the accuracy of the landslide susceptibility mapping. The proposed model consisted of a physical module, a machine learning module and a matrix approach module. The physical module assessed the effects of rainfall and peak ground acceleration (PGA) on landslide occurrence probability based on a pseudo-static model. The machine learning module applied Multilayer Perceptron Neural Networks to assess landslide susceptibility, using 611 landslide events caused by strong earthquakes and extreme typhoons. The landslide susceptibility maps obtained from these two modules were then combined into final susceptibility map through a matrix approach. The final susceptibility map included five susceptible levels: very low, low, moderate, high, and very high. To evaluate the proposed model performance, the resulting models were assessed using the areas under the receiver operating characteristic curves. The areas under the success rate curves from the physical module, machine learning module and matrix-based approach showed 79.2%, 82.7% and 83.9% accuracy, respectively. Furthermore, the predicted rate curves showed that the areas under the curve for physical module, machine learning module and matrix-based approach were 78.4%, 82.3% and 83.4%, respectively. These results suggest that the proposed hybrid model improves the prediction capability compared to physically-based method or machine learning model and can be readily used to assess spatial probability of landslide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
9秒前
爆米花应助舒服的觅夏采纳,获得10
18秒前
1yyyyyy完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
27秒前
30秒前
HE完成签到,获得积分20
32秒前
40秒前
HE发布了新的文献求助10
46秒前
1分钟前
1分钟前
fxx完成签到,获得积分10
1分钟前
1yyyyyy发布了新的文献求助10
1分钟前
1分钟前
希望天下0贩的0应助fxx采纳,获得10
1分钟前
yuanjunhu发布了新的文献求助20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
P_Chem完成签到,获得积分10
2分钟前
原子应助小李老博采纳,获得20
2分钟前
2分钟前
李志全完成签到 ,获得积分10
2分钟前
wmf完成签到 ,获得积分10
3分钟前
Lucas应助小兔子采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
天天天才完成签到,获得积分10
3分钟前
小胖完成签到 ,获得积分10
3分钟前
3分钟前
小兔子发布了新的文献求助10
3分钟前
gzy完成签到,获得积分20
3分钟前
3分钟前
3分钟前
gzy发布了新的文献求助10
3分钟前
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256087
求助须知:如何正确求助?哪些是违规求助? 3788715
关于积分的说明 11888783
捐赠科研通 3438362
什么是DOI,文献DOI怎么找? 1886902
邀请新用户注册赠送积分活动 938071
科研通“疑难数据库(出版商)”最低求助积分说明 843711