Deep Learning model-based approach for preoperative prediction of Ki67 labeling index status in a noninvasive way using magnetic resonance images: A single-center study

医学 磁共振成像 生物标志物 深度学习 核医学 模式治疗法 垂体腺瘤 经蝶手术 放射科 人工智能 腺瘤 病理 外科 计算机科学 生物化学 化学
作者
Xu-jun Shu,Hui Chang,Qun Wang,Wu-gang Chen,Kai Zhao,Bo-yuan Li,Guochen Sun,Shengbo Chen,Bainan Xu
出处
期刊:Clinical Neurology and Neurosurgery [Elsevier BV]
卷期号:219: 107301-107301 被引量:9
标识
DOI:10.1016/j.clineuro.2022.107301
摘要

Ki67 is an important biomarker of pituitary adenoma (PA) aggressiveness. In this study, PA invasion of surrounding structures is investigated and deep learning (DL) models are established for preoperative prediction of Ki67 labeling index (Ki67LI) status using conventional magnetic resonance (MR) images. We reviewed 362 consecutive patients with PAs who underwent endoscopic transsphenoidal surgery, of which 246 patients with primary PA are selected for PA invasion analysis. MRI data from 234 of these PA patients are collected to develop DL models to predict Ki67LI status, and DL models were tested on 27 PA patients in the clinical setting. PA invasion is observed in 46.8% of cases in the Ki67 ≥ 3% group and 33.3% of cases in the Ki67 < 3% group. Three deep-learning models are developed using contrast-enhanced T1-weighted images (ceT1WI), T2-weighted images (T2WI), and multimodal images (ceT1WI+T2WI), respectively. On the validation dataset, the prediction accuracy of the ceT1WI model, T2WI model, and multimodal model were 87.4%, 89.4%, and 89.2%, respectively. In the clinical test, 27 MR slices with the largest tumors from 27 PA patients were tested using the ceT1WI model, T2WI model, and multimodal model, the average accuracy of Ki67LI status prediction was 63%, 77.8%, and 70.4%, respectively. Preoperative prediction of PA Ki67LI status in a noninvasive way was realized with the DL model by using MRI. T2WI model outperformed the ceT1WI model and multimodal model. This end-to-end model-based approach only requires a single slice of T2WI to predict Ki67LI status and provides a new tool to help clinicians make better PA treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv完成签到,获得积分10
2秒前
103921wjk发布了新的文献求助10
2秒前
宇航员完成签到 ,获得积分10
3秒前
唐飒发布了新的文献求助10
3秒前
6秒前
曾经的臻发布了新的文献求助10
9秒前
飞翔的企鹅完成签到,获得积分10
10秒前
耍酷的醉蓝完成签到,获得积分10
12秒前
14秒前
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
昏睡的蟠桃应助科研通管家采纳,获得200
19秒前
19秒前
1z完成签到,获得积分10
19秒前
20秒前
俟天晴完成签到 ,获得积分10
20秒前
邰归应助公孙世往采纳,获得10
22秒前
22秒前
zhw发布了新的文献求助10
23秒前
mengzhao完成签到,获得积分10
24秒前
蒙爱者完成签到,获得积分10
25秒前
墩墩发布了新的文献求助10
25秒前
28秒前
29秒前
负责的寒梅完成签到,获得积分10
29秒前
30秒前
dsuccess发布了新的文献求助10
33秒前
开心绫完成签到,获得积分10
34秒前
chd发布了新的文献求助10
34秒前
47秒前
道元完成签到,获得积分10
49秒前
jsw发布了新的文献求助10
53秒前
搜集达人应助爱吃烤脆骨采纳,获得10
54秒前
xzy998应助Expelliarmus采纳,获得10
55秒前
59秒前
柠檬要加冰完成签到 ,获得积分10
1分钟前
小蘑菇应助jsw采纳,获得10
1分钟前
文G完成签到,获得积分10
1分钟前
浪迹天涯发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325811
关于积分的说明 10224284
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669109
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649