Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock

自动停靠 码头 对接(动物) 化学 氢键 结合位点 立体化学 组合化学 生物化学 有机化学 分子 生物信息学 医学 护理部 基因
作者
Qiao Xue,Liu Xian,Paul Russell,Jin Li,Wenxiao Pan,Jianjie Fu,Aiqian Zhang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:233: 113323-113323 被引量:132
标识
DOI:10.1016/j.ecoenv.2022.113323
摘要

Molecular docking is a widely used method to predict the binding modes of small-molecule ligands to the target binding site. However, it remains a challenge to identify the correct binding conformation and the corresponding binding affinity for a series of structurally similar ligands, especially those with weak binding. An understanding of the various relative attributes of popular docking programs is required to ensure a successful docking outcome. In this study, we systematically compared the performance of three popular docking programs, Autodock, Autodock Vina, and Surflex-Dock for a series of structurally similar weekly binding flavonoids (22) binding to the estrogen receptor alpha (ERα). For these flavonoids-ERα interactions, Surflex-Dock showed higher accuracy than Autodock and Autodock Vina. The hydrogen bond overweighting by Autodock and Autodock Vina led to incorrect binding results, while Surflex-Dock effectively balanced both hydrogen bond and hydrophobic interactions. Moreover, the selection of initial receptor structure is critical as it influences the docking conformations of flavonoids-ERα complexes. The flexible docking method failed to further improve the docking accuracy of the semi-flexible docking method for such chemicals. In addition, binding interaction analysis revealed that 8 residues, including Ala350, Glu353, Leu387, Arg394, Phe404, Gly521, His524, and Leu525, are the key residues in ERα-flavonoids complexes. This work provides reference for assessing molecular interactions between ERα and flavonoid-like chemicals and provides instructive information for other environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DWJIANG发布了新的文献求助10
1秒前
嘻嘻完成签到,获得积分10
1秒前
1秒前
Manxi发布了新的文献求助10
2秒前
3秒前
思源应助背后的钢铁侠采纳,获得10
4秒前
5秒前
hyd发布了新的文献求助10
5秒前
5秒前
Summer完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Moonber发布了新的文献求助10
7秒前
自觉的问旋应助狗宅采纳,获得10
7秒前
significant发布了新的文献求助20
8秒前
子子完成签到,获得积分10
8秒前
张俊扬发布了新的文献求助10
9秒前
浮游应助东东呀采纳,获得10
9秒前
9秒前
DRHSK发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
yzh发布了新的文献求助10
11秒前
12秒前
熊建华完成签到,获得积分10
12秒前
科研通AI5应助DRHSK采纳,获得10
12秒前
H221发布了新的文献求助10
13秒前
13秒前
李晓龙完成签到,获得积分10
14秒前
bless完成签到,获得积分10
14秒前
14秒前
李正源发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
Ming完成签到,获得积分10
15秒前
16秒前
16秒前
小前途完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182327
求助须知:如何正确求助?哪些是违规求助? 4368980
关于积分的说明 13604725
捐赠科研通 4220489
什么是DOI,文献DOI怎么找? 2314726
邀请新用户注册赠送积分活动 1313449
关于科研通互助平台的介绍 1262141