Adaptive finite-time tracking control for full state constrained nonlinear systems with time-varying delays and input saturation

控制理论(社会学) 反推 非线性系统 跟踪误差 时间导数 人工神经网络 李雅普诺夫函数 控制器(灌溉) 计算机科学 数学 有界函数 自适应控制 控制(管理) 数学分析 物理 量子力学 人工智能 机器学习 农学 生物
作者
Tian Xu,Yuxiang Wu,Haoran Fang,Fuxi Wan
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:44 (9): 1824-1835 被引量:7
标识
DOI:10.1177/01423312211065851
摘要

This paper investigates the adaptive finite-time tracking control problem for a class of nonlinear full state constrained systems with time-varying delays and input saturation. Compared with the previously published work, the considered system involves unknown time-varying delays, asymmetric input saturation, and time-varying asymmetric full state constraints. To ensure the state constraint satisfaction, the appropriate time-varying asymmetric Barrier Lyapunov Functions and the backstepping technique are utilized. Meanwhile, the finite covering lemma and the radial basis function neural networks are employed to solve the unknown time-varying delays. The assumption that the time derivative of time-varying delay functions is required to be less than one in traditional Lyapunov–Krasovskii functionals is removed by the proposed method. Moreover, the asymmetric input saturation is handled by an auxiliary design system. Taking the norm of the neural network weight vector as an adaptive parameter, a novel adaptive finite-time tracking controller with minimal learning parameters is constructed. It is proved that the proposed controller can guarantee that all signals in the closed-loop system are bounded, all states are constrained within the predefined sets, and the tracking error converges to a small neighborhood of the origin in a finite time. Finally, a comparison study simulation is given to demonstrate the effectiveness of our proposed strategy. The simulation results show that our proposed strategy has good advantages of high tracking precision and disturbance rejection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI6应助郭氧化氢采纳,获得10
1秒前
憨先生发布了新的文献求助10
2秒前
layne1202完成签到,获得积分10
3秒前
cjcai应助cindy采纳,获得10
4秒前
4秒前
panlu完成签到,获得积分10
4秒前
爱吃萝卜的Bob完成签到,获得积分10
5秒前
李健的小迷弟应助s615采纳,获得10
5秒前
6秒前
7秒前
漂亮幻莲发布了新的文献求助10
9秒前
谢同学发布了新的文献求助10
9秒前
9秒前
11秒前
思源应助EMC采纳,获得10
12秒前
研友_VZG7GZ应助心想事陈采纳,获得10
12秒前
13秒前
....发布了新的文献求助10
13秒前
zc发布了新的文献求助10
13秒前
SciGPT应助zcc采纳,获得10
14秒前
雪生在无人荒野完成签到,获得积分10
14秒前
卿卿完成签到,获得积分10
15秒前
枕上诗书发布了新的文献求助10
15秒前
ding应助QQ采纳,获得10
16秒前
16秒前
雪雪儿发布了新的文献求助10
17秒前
小马甲应助小涵采纳,获得10
18秒前
威武的十八完成签到,获得积分20
20秒前
FashionBoy应助....采纳,获得10
20秒前
科研通AI6应助cherry323采纳,获得10
21秒前
22秒前
Lu发布了新的文献求助30
22秒前
22秒前
11完成签到,获得积分10
22秒前
英姑应助SUKAAAA采纳,获得30
23秒前
zc完成签到,获得积分20
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140