已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Probabilistic Wind Power Forecasting Using Optimized Deep Auto-Regressive Recurrent Neural Networks

进化算法 计算机科学 概率逻辑 人工神经网络 人工智能 机器学习 调度(生产过程) 数学优化 数学
作者
Parul Arora,Seyed Mohammad Jafar Jalali,Sajad Ahmadian,Bijaya Ketan Panigrahi,Ponnuthurai Nagaratnam Suganthan,Abbas Khosravi
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2814-2825 被引量:50
标识
DOI:10.1109/tii.2022.3160696
摘要

Wind power forecasting is very crucial for power system planning and scheduling. Deep neural networks (DNNs) are widely used in forecasting applications due to their exceptional performance. However, the DNNs’ architectural configuration has a significant impact on their performance, and the selection of proper hyper-parameters determines the success or failure of these models. Therefore, one of the challenging issues in DNNs is how to assess their hyper-parameter values effectively. Most of the previous researches in the literature have tuned the DNNs’ hyper-parameters manually, which is a weak and time-consuming task. Using optimization/evolutionary algorithms is an effective way to obtain the optimal values of DNNs’ hyper-parameters automatically. In this article, we propose a novel evolutionary algorithm that is based on the grasshopper optimization algorithm (GOA) improved by adding two evolutionary operators, opposition-based learning and chaos theory, to the optimization process. Overall, a novel probabilistic wind power forecasting model named neural GOA deep auto-regressive (NGOA-DeepAr) is proposed based on an auto-regressive recurrent neural network in which the proposed evolutionary algorithm has optimized its hyper-parameters. The performance of the proposed NGOA-DeepAr model is tested on two different datasets: One is the publicly available GEFCom-2014 dataset and the other is the Australian Energy Market Operator dataset. The prediction interval coverage probability and pinball loss for the two datasets are $[0.902, 0.320]$ and $[0.933, 1.4885]$ , respectively. According to the experimental findings, our proposed NGOA-DeepAr is much faster in learning and outperforms the benchmark DNNs and the other neuroevolutionary models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cheng完成签到,获得积分10
2秒前
2秒前
于洋完成签到 ,获得积分10
2秒前
4秒前
禾斗石开发布了新的文献求助20
7秒前
平常心发布了新的文献求助10
10秒前
香蕉觅云应助xxx采纳,获得10
11秒前
12秒前
Micheal完成签到 ,获得积分10
13秒前
only完成签到 ,获得积分10
15秒前
wpz完成签到,获得积分10
17秒前
易吴鱼完成签到 ,获得积分10
18秒前
yu完成签到 ,获得积分10
18秒前
细心的如天完成签到 ,获得积分0
19秒前
orixero应助平常心采纳,获得10
19秒前
Sunziy完成签到,获得积分10
22秒前
科研通AI5应助xlxu采纳,获得10
23秒前
24秒前
26秒前
优雅的帅哥完成签到 ,获得积分10
26秒前
漂亮的天宇完成签到,获得积分20
26秒前
未夕晴完成签到,获得积分10
26秒前
CometF完成签到 ,获得积分10
27秒前
平常心完成签到,获得积分10
27秒前
29秒前
布同完成签到,获得积分10
30秒前
32秒前
义气的元柏完成签到 ,获得积分10
34秒前
搞搞科研发布了新的文献求助10
37秒前
37秒前
良良丸完成签到 ,获得积分0
38秒前
小龙完成签到,获得积分10
38秒前
111aaa发布了新的文献求助10
40秒前
迷路冰颜完成签到 ,获得积分10
40秒前
搞搞科研完成签到,获得积分10
44秒前
sunshine应助含蓄的金鱼采纳,获得10
44秒前
栀璃鸳挽发布了新的文献求助10
45秒前
丸子完成签到 ,获得积分10
46秒前
可千万不要躺平呀完成签到,获得积分10
50秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811601
求助须知:如何正确求助?哪些是违规求助? 3355922
关于积分的说明 10378326
捐赠科研通 3072802
什么是DOI,文献DOI怎么找? 1687724
邀请新用户注册赠送积分活动 811767
科研通“疑难数据库(出版商)”最低求助积分说明 766817